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Chapter 7 

Knowledge Visualization 

 

Thought is often associated with both language and vision. Research shows 

that for some thinking may be primarily visual while for others thinking occurs 

more naturally through language and sound [7-1]. Psychologists have found 

the ability to form mental images helps us to understand abstract concepts 

and logical relationships more easily. In many ways, thinking is a combination 

of both verbal language and visual imagination.  

 

Tufte demonstrates, through clear examples, the ways in which visualization 

is present in every day life. We find that information visualization, historically 

speaking, is closely connected to design and communication. The formal 

qualities of space, shape, density and color are equally present in 

visualization as in communicative design [7-2]. We might ask: What are the 

significant differences between visual design, communication and information 

visualization?  

 

In chapter two, information visualization and knowledge visualization are 

presented as a difference in approach between large-scale dataset, such as 

simulations of clouds and water which posses a low data-semantic ratio, and 

data with a high-semantic content as exemplified by encyclopediae and 
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written text. The data-semantic ratio represents one measure of this 

relationship. But nothing in the original definition refers to the visual aspect of 

these fields:  

 
Data-Semantic Ratio: This is the ratio of the number of 
attributes of each individual element to the number of 
elements in the whole for some set of information. 

 

How does the visual aspect enter into the study of data and semantics? Both 

information visualization and knowledge visualization appear to posses some 

qualities of visual thinking, but the definition above does not require it. This is 

the primary concern of the present chapter. Through specific examples, 

relationships between data and semantic content and between linguistic and 

visual thinking will be investigated in more detail. 
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7.1. Informational Visualization and Design 

 

One view of scientific and information visualization is that they arise from the 

historic need for visual understanding of scientific research through human 

perception. Colin Ware states: 

 
"On the one hand, we have the human visual system, a 
flexible pattern finder, coupled with an adaptive decision-
making mechanism. On the other hand are the computational 
power and vast information resources of the computer. 
Interactive visualizations are increasingly the interface 
between the two. Improving these interfaces can 
substantially improve the performance of the entire system."
 [ 7-3] 

 

In this paradigm, the human is viewed as equivalent to machine but with a 

different set of functional abilities. The mention of improved performance most 

likely refers to scientific understanding in which the chapter is set. With regard 

to Information Aesthetics, however, this argument avoids the possibility that 

the communicative goal of visualization does not necessarily need to be 

scientific. It may also be socio-critical or self-reflective.  

 

Regardless of the goal, however, it seems that a better interface design will 

improve communication. Tufte shows how this is possible, but also 

demonstrates that visual design can also mislead the viewer to draw incorrect 

conclusions. The challenge is the way in which one uses space, color and 

other visual cues to explore data. 
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"Arbitrary, transient, one-sided, fractured, undocumented 
materials have become the great predicament of image 
making and processing. How are we to asses the integrity of 
visual evidence? What ethical standards are to be observed 
in the production of such images?"  [7-4] 

 

Misleading designs need not be intentional. Often, information visualization is 

used to communicate complex information to an audience unfamiliar with the 

subject material. In many cases this is likely to be an intractable problem. 

Nonetheless, one of the compelling aspects of visual communication is its 

ability, in a single image, to allow the viewer to selectively choose what will be 

learned. Figure 7.1. shows the a concise view of the phases of the moon, and 

the planets jupiter and saturn by Alexander Jamieson, 1820. 

 

A central theme in information visualization that enables understanding - 

distinct from other forms of graphics design - is the concept of a cognitive 

map. Traditionally, a map is a visual representation of a geographic space. 

There is a one-to-one relationship between space on a traditional map and 

physical space. However, examples such as the London Underground 

subway by Harry Beck [7-5] shows that maps need not correlate to physical 

space. A cognitive map allows us to form mental images of non-physical 

qualities and map them to spatial metaphors [7-6]. Thus a map, speaking 

abstractly, is not simply a tool but a general principle for visualization. Maps 

allow us to see non-spatial concepts spatially. 



193 

 

 

 

A specific map, however, is always a map of something in some space. In this 

respect it is formally constrained to the specific concept being portrayed. One 

of the unique aspects of cognition is our ability to easily jump from one 

conceptualization to another. While a map of the internet, for example, 

conveys the complexity of the internet as a fixed image it does not reveal the 

detailed layers of meaning present in it. The only way to explore the meaning 

present in a rich structure is to be able to navigate quantitative and semantic 

dimensions simultaneously. 

Figure 7.1. Celestial atlas, A. Jamieson, 1820  
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Thought is highly associative. Consider the London Underground Subway of 

Beck [7-5]. Due to Beck's layout, one can easily identify the sequence of 

stations that will be arrived at. But who has not wondered how such tracks are 

laid without intersecting? While Beck eliminates geographic distance in order 

to more clearly convey useful information, one might like to know why the 

stops take progressively longer as the Bakerloo line exits the city to the west. 

Which of the London subway lines was the first to be built? Have any been 

rebuilt? Can fish near a river tunnel feel when a subway passes? Which fish 

are more susceptible? These are the questions that often arise while in 

transit. 

 

Semantic knowledge consists of the complexity of relationships found in the 

natural associations of thought. To explore the associations above, one must 

still consult a number of different sources. A map, either cognitive or spatial, 

is a representation of a single structure within this much larger map of human 

cognition. This chapter investigates how we might navigate and visualize 

general associative semantic spaces in a single framework. 

 

7.2. Quantitative and Qualitative Data 

 

In general, studies of the natural world are neither purely quantitative nor 

purely qualitative but contain aspects of both. Consider the atomic elements  
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as an example. An element is defined by its atomic weight and number (the 

number of protons in its nucleus). Mendeleev discovered a unique, periodic 

pattern in the atomic weights of the elements which corresponded to their 

properties.  

 

 

 

 

Using modern values, it is possible to see the periodic pattern in one of these 

properties. Melting point versus atomic number for each of the elements is 

shown in Figure 7.2. The quantitative data are the values of the attributes 

themselves. However, the elements are now known to have many other 

properties in addition to those Mendeleev examined. One might ask: What 

other properties show periodic relationships to atomic mass? Are there any 

Figure 7.2. Atomic number versus melting 
point for the chemical elements. 
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properties which do not have periodic relationships? Are their any unusual 

correlations between any two properties? To answer these questions requires 

that we use both the values of the data and their qualitative semantics.  

 

A unique graphing system was developed for Quanta in which visualization is 

directly linked to semantic data sets. There is no need to import data, select, 

and then plot it. The interface is designed so that the user simply selects the 

objects to be plotted and the system completes the process of loading data, 

organizing and visualizing it. The tools are similar in spirit to Hans Rosling's 

Gapminder software, which allows any two world economic statistics to be 

plotted against one another [7-7]. Here, similar functions are possible except 

that the graph is linked to a hypergraph database. This provides a generic 

structure for knowledge and allows features of any object to be plotted. 

Connecting to values in the database facilitates interdisciplinary research as 

objects in different fields can be compared in the same system. 

 



197 

 

 

   
Figure 7.3. Atomic mass versus density for 
the chemical elements. 

Figure 7.4. Atomic group versus hardness 
for the chemical elements. 
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Figure 7.5. Heat capacity versus speed of 
sound for the chemical elements. 

Figure 7.6. Earth abundance versus sun 
abundance for the chemical elements. 
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Several examples are shown in Figure 7.3 thru Figure 7.6. The first shows a 

log plot of atomic mass versus density (Figure 7.3). The upper group are the 

solids (higher density) while the lower group are the gases (low density). The 

periodicity with atomic mass is clearly visible. The second plots show atomic 

group versus hardness (Figure 7.4). Notice the interesting rise in hardness for 

the semi-conductors (germanium and silicon).  The third graph shows heat 

capacity versus speed of sounds for the elements (Figure 7.5). To one 

unfamiliar with chemistry there is a non-obvious inverse correlation here. This 

can be explained by the degrees of freedom in the atomic structure [7-8].  

 

The last graph is a correlation of the abundance of elements in the sun versus 

on the earth (Figure 7.6). Once can immediately notice the lighter elements 

present in both, the heavier elements present only in the earth (due to the 

Earth's crust), and the rarity of some elements in both (such as gold). 

 

All four graphs were created in less than one minute. At the top left of the 

graph area the interface includes a text box to enter the object of study, in this 

case "Elements", and two combo boxes to select the properties for the X and 

Y axes respectively. Additional buttons allow the user to toggle labels, image 

icons, and to generate log plots.  
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This graphing system requires only four mouse clicks to generate a different 

view of the data. The goal is to develop tools which allow one to move fluidly 

between various visual representations. Using existing graphing software, it 

would take several minutes to indicate the data to be graphed, initiate a graph 

type, select the proper range of values, and annotate the graph.  

 

Algorithmically, when a user selects a new object of study the graph 

automatically determines the properties that are available to be plotted by 

scanning the data for numerical attributes. The graph has direct access to the 

required data. These properties are then included in both X and Y combo 

boxes as plotable values. The system generates the graph dynamically by 

pulling out only the relevant data needed for the plot from the much larger 

semantic network of the Quanta hypergraph. 

 

Graphing is one of the most basic visualization techniques. While the system 

presented can plot any two semantic qualities it does not yet support multi-

dimensional plots, overlaid plots of the same features for different objects, or 

other graphing formats such as pie or bar charts. These extensions could be 

easily incorporated.  

 

This graphing system demonstrates that directly linking data to visualization 

opens new possibilities for how we explore and find meaning in what we 
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study. When semantic meaning and quantitative data are simultaneously 

present in the same system, it is possible to go from data to visualization 

immediately. Rather than bring the data to the graph, we can  select an object 

of study and the graph itself investigates the database and tells us what is 

available. 

  

7.3. Trees 

 

Another classical problem in 

information visualization is the 

display and navigation of trees [7-

5]. Visualizing large trees is 

difficult because the lower levels 

may contain a great number of 

nodes with respect to their parent 

nodes. One of the most common 

techniques for displaying a trees 

structure is the indented list. 

 

An example of an indented list 

used to display the Quanta 
Figure 7.7. Indented lists, with thumbnail 
icons, in the ontology viewer of Quanta. 
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generic ontology is shown in Figure 7.7. This list is used in conjunction with a 

document view that allows a user to navigate a set of concepts. This 

implementation can handle very large trees since only currently open nodes 

are stored in memory. As the user changes focus, the previous nodes are 

collapsed, the new focus nodes opened, and the list smoothly pans to the 

new location. 

 

A list is not necessarily the ideal way to view trees, however. Robertson 

explores a visualization approach that uses Cone-Trees to provide smooth 3D 

rotational navigation of a hierarchy [7-9]. Cone-trees, unlike lists, allow the 

user to see multiple parts of a tree simultaneously (all children of siblings). 

However, this introduces some problems with cluttering of nodes at a given 

level. Perhaps related to this, McKenzie et al. found that cone trees did not 

significantly out perform tree lists for some navigational tasks [7-10]. 

 

Another alternative, Treemaps, are constructed by recursively subdividing 

rectangular spaces horizontally and vertically [7-11]. Treemaps have the 

beneficial property that nodes are assigned areas relative to the size of their 

subtrees. One critical feature, however, is that treemaps often result in node 

aspect ratios in which content is difficult to display. Yet a third visualization of 

trees is hyperbolic layout. Both two-dimensional [7-12] and three-dimensional 

[7-13] versions are possible. Hyperbolic layout allows the user to see the 
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overall structure of the entire tree, with smooth navigation, but requires spatial 

distortions to arrange nodes. 

 

A new type of visualization of large hierarchies is introduced in Quanta using 

the concept of circle packing 1. The idea is motivated by the observation that 

circle packing solves the problem of placing the most number of elements in a 

small space while also preventing overlap. In addition, unlike Treemaps, 

circles all have identical aspect ratios thus making them better suited to 

conveying content. Applied hierarchically, each set of children is packed 

inside the circle of its parent.  

                                                
1 A week after the author's implementation of circle packing was completed as described 
here, similar work by [7-14] was found in SIGCHI 2006. The essential differences are the 
packing alogrithm (theirs is more efficient and accurate) and the use of dynamic tree 
construction from an underlying network (present here but not in their implementation). 
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The circle packing algorithm itself consists of several steps. First, a polar 

perimeter function is defined as the current outer boundary of the packing. A 

new circle is then located on the boundary by minimizing its distance to origin 

while being constrained not to collide with other circles. Collisions are 

detected using a local search of the perimeter function. Finally, the new circle 

is added to the perimeter function by taking its maximum extents from the 

origin. This algorithm is shown in Figure 7.8. While it does not produce 

optimal packings, the algorithm can efficiently handle thousands of nodes in 

real-time. 

 

Figure 7.8. Circle packing algorithm. Starting with an existing perimeter (left), a position for 
a new circle is found along the perimeter that is closest to the center of the group (middle) , 
resulting in a new perimeter (right). The perimeter function is stored in polar coordinates. 
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An example of the circle packing visualization for the Linnean sub-taxonomy 

of the Quanta ontology is shown in Figure 7.9. Another example in Figure 

7.10 shows image icons placed at circle nodes rather than text. 

 

The primary benefits of circle packing for visualizing trees are its efficient use 

of space and the same aspect ratio for each node. In addition, like Treemaps, 

the area of each circle corresponds to information content (or some other 

desirable property). Sorting of nodes by size before packing allows more 

critical nodes to be placed at the center of the field of vision. The drawbacks 

to circle packing are related to the circle being an non-ideal shape for 

containing textual content and the fact that gaps between circles are not 

utilized.  
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Figure 7.9. Circle packing view of the 
Linnean taxonomy of organisms. 
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 Figure 7.10. Circle packing view of 
mineral compounds with images. 
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As with graphs, the techniques for tree visualization are normally applied to 

data sets that already have a tree-like structure. However, as discussed in the 

previous chapter (Ontologies), a rich semantic network will contain a number 

of overlapping hierarchies. A useful visualization of trees would operate not 

only on fixed structures and relationships but on the many variations of trees 

embedded in other structures. For example, one might wish to see a circle 

packing visualization of the Linnean taxonomy in which area was allocated 

according to actual physical size rather than number of children nodes - or to 

build a tree according to means of transport rather than phylogenic taxonomy. 

This would allow an infinite number of trees to be explored from a single 

semantic network.  

 

The circle packing implementation here is a view-dependent technique which 

constructs a tree dynamically while it is being visualized. Each time the user 

navigates to a new node the system queries the underlying hypergraph to 

determine the children to include according to specified criteria. The user is 

able to freely pan and zoom to focus on any concept. Circle packing of 

children nodes are performed in real-time when the parent overlaps the 

center of the screen and its magnified size is above some threshold (i.e. it has 

focus). When focus shifts, that subtree is collapsed and another opened. 
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Internally, the system could be easily extended to allow the user to adjust the 

feature that determines circle size or the tree-branching criteria. However, an 

interface has not yet been built to modify these attributes. 

 

7.4. Timelines 

 

It is difficult to firmly establish the historical development of linear timelines as 

distinct from other representations of time [7-15]. The reason for this may be 

found in one of the first timelines developed by Joseph Priestley in 1765. 

Rosenberg and Hendrick observe Priestley's need to explain the purpose of 

spatial representation:  

"[While time is not] the object of any of our senses, and no image can 
properly be made of it, yet because it has a relation to quantity, and we 
can say a greater or less space of time, it admits of a natural and easy 
representation in our minds by the idea of a measurable space, and 
particularly that of a line."   [7-15]  

 

At this point, it was not yet natural to convey temporal information spatially.  

Priestley found it necessary to explain the purpose of linear arrangement of 

time through space. However, the timeline is now a common tool for 

understanding temporal events. 
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Priestley's timeline conveys a biographical overview of 2,000 people from 

1200 BC to 1750 AD (Figure 7.11). As with representing geographic space, 

the problem of density of information is immediately apparent. To investigate 

how this might be resolved we can look briefly at a modern example in 

geography that resolves this through navigation. 

 

The Google Maps project allows viewers to zoom in and out of geographic 

satellite data. As the zoom factor is increased, the system dynamically loads 

more detailed information. A similar project by Microsoft called Microsoft 

Figure 7.11. Joseph Prestley, Chart of 
Biography, 1765. 
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Virtual Earth smoothly cross-fades between difference scales to afford a more 

continuous experience. This idea of dynamic content is an important aspect of 

large scale Information Visualization. 

 

Development of scalable, dynamic timelines is a current area for research. 

Huynh compare space-filling methods to linear layouts to develop TimeQuilts 

[7-15]. These timelines, Figure 7.12, use a "weaving" algorithm to place 

events with minimal clutter. While full spatial zooming is not possible, the 

author uses placeholder images to represent clusters to achieve semantic 

zooming. 

 

 
Figure 7.12. TimeQuilts, Huynh et al., 2005 
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An internet-based Timeline by the same author, developed at the MIT CSAIL, 

allows smooth horizontal panning across time (the SIMILE system). Rather 

than allowing zooming on the primary timeline, differences in scale are solved 

using an overview timeline that shows general features at larger timescales. 

Neither of these solutions provide a fully zoomable timeline.  

 

A comparative, continuously zoomable timeline visualization was developed 

using the Quanta framework. The difficulty with providing continuous zooming 

on timelines is due to the fact that, unlike points on a geographic map where 

any point occupies one X, Y coordinate, events have duration that cover 

many points along the spatio-temporal axis. In addition, events are discrete 

and may be large in number. The solution presented is to provide smooth 

hiding and revealing of information as the user navigates to larger and shorter 

time scales. In addition, zooming is permitted independently on the X-axis 

(temporal) and Y-axis (informational) to allow the user to customize the 

information revealed. 

 

To construct the timeline, a view-dependent collision resolution algorithm is 

developed. View-dependent techniques, common in computer graphics, 

perform computations only on information within the current field of  

view [7-17]. In this case, the collision algorithm attempts to plot all events 

within the current temporal range at a given zoom level. The algorithm 
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proceeds from left to right, checking if the display of additional events might 

collide with existing ones. When a temporal gap is large enough, new items 

are added to the display. This is done on a row-by-row basis from left to right 

to achieve the maximum possible density without overlap. A diagram of this 

technique is shown in Figure 7.13. 

 

 

 

 

 

 

Figure 7.13. Timeline collision algorithm. Starting with currently processed events, 
collision boxes for each row are used to keep track of free space to the right. Event 7 
is being added. In this step, the event it is a) rejected from row 1 because its starting 
time would collide with Event 6, b) rejected from row 2 because it would collide 
with Event 2, and finally c) added to row 3 without collision. Had there been no 
available row for it, Event 7 would have been rejected altogether and Event 8 
attempted. The process continues for all events in the view. 
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By altering the X and Y-axis zoom factors, the user can customize the amount 

of information revealed. Figure 7.14 and 7.15 show a screenshot of the 

Quanta Timeline at two different zoom levels. At large time scales, the few 

items shown are spaced far in time. At shorter times, more items begin to fill 

in the open gaps. When zooming, there is a point at which the zoom factor is 

one-to-one with the data such that all events in the given time range are 

visible. 

 

One of the difficulties of representing many events in a small viewing space 

(i.e. a computer monitor) is that not all items will be visible. This is true of 

geographic zoomable maps and also of the collision algorithm presented 

here. To compensate for this a density plot, shown in Figure 7.16, can be 

toggled with a button. All events are represented as dots over the same time 

scale, thus allowing the user to quickly reveal how much information is being 

hidden at any time.  

 

Time is fundamental to life in many ways. Personal events, works, projects, 

and natural events all occur in time. Therefore, the types of questions one 

might ask regarding time can be very complex. To give an interdisciplinary 

example, one might wish to know what paintings and scientific papers 

between 1970 and 1980 examine the sun as an object of study. How would 

this compare to a similar query from 1910 to 1920?  
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Figure 7.14. Timeline of modern sculpture. 
Zoom range from 1700 to 2200 AD. 
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Figure 7.15. Timeline of modern sculpture. 
Zoomed range is from 1930 to 2010 AD. 



217 

Figure 7.16. Timeline density plot of painters and sculptors 
from 1600 to 2000. Each point represents an individual, reflecting 
the amount of information available in the current database.  
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The Quanta timeline is also novel in that it can dynamically generate 

comparative timelines. This is motivated by interdisciplinary questions related 

to simultaneous events in different fields. How much correlation is there 

between research in one field verses another? Is there a difference when 

looking at nearby disciplines, such as engineering and computer science, 

versus distant disciplines such as physics and the visual arts. 

 

To investigate such questions, the comparative timeline utilizes the vertical 

axis to allow any number of subject areas to be compared. The horizontal 

axis is always used for time. Two combo boxes specify the category and 

target for the addition of new sub-timelines. The category, such as painting, 

physics or engineering, specifies the semantic space from which events will 

be drawn. The target, such as people, works of art, or research papers, 

specifies the types of events that will be plotted. When a new sub-timeline is 

requested the system initiates a background process, simultaneous with the 

visualization, that begins to scan the underlying database for suitable events 

that match the given criteria. The category and target of various sub-timelines 

need not match. As shown in Figure 7.17, it is possible to compare Visual 

Works (target) in the field of Sculpture (category) to Research Papers (target) 

in the field of Physically-Based Modeling  (category).  
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Figure 7.17. Comparative timeline of sculptures and papers on the 
topic of physically-based modeling (subfield of computer graphics) 
from 1996 to 2004. 
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7.5. Networks 

 

The term network can have many meanings. It may refer to a simple graph of 

nodes and edges, it may refer to a physical infrastructure such as the internet, 

or it may refer to a semantic network of concepts. The development of graph-

based visualization was founded on the need to understand systems of 

connections.  

 

Visualization of network structures is made difficult by the fact that many 

cross-connections cannot be easily represented in two or three-dimensional 

space [7-5]. However, several research directions have made it possible to 

explore complex networks. The first, spring-embedder models, allow a graph 

to iteratively achieve a less cluttered layout of nodes. In this case, the criteria 

for placement include uniform length of edges and symmetry [7-18]. A 

physically-based spring system allows nodes to dynamically achieve near 

optimal positions.  Kamada and Kawai extend this minimize the number of 

edge crossings and to achieve uniform node distribution [7-19]. 

 

Node placement techniques are not always successful as the number of 

interconnections in a network may be such that no flat representation without 

overlapping lines is possible. Thus, for most applications, any graph-based 
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visualization will contain overlaps. Tools can be provided to selectively filter 

edges based on various criteria [7-20]. 

 

Another approach is to include semantic information in the node layout 

criteria. A successful application of this is the Netmap which groups generic 

concepts in a networks into radial segments [7-21]. The network is drawn 

inside the circle thus formed, with connections made to the segments. In this 

way, it is possible to see patterns in connectivity related to the concepts 

shown. Other variations place nodes in columns rather than radially [7-22]. 

Finally, it is possible to represent networks in the third dimensions as well. An 

early example, Narcissus, uses a 3D spring-embedder model to place 

spherical nodes in space [7-23]. 

 

Since the late 1990s, and due to the relative ease in programming them, the 

number of graph-based visualizations developed has increased dramatically. 

This is apparent from a website titled Information Aesthetics which collects 

new examples of these types of visualizations daily.2  While many were 

developed as information visualization tools, others were developed for 

aesthetic reasons. While aesthetic pursuits are valuable to push creative 

limits, with the quantity of repetitive work one wonders what social processes 

might enable better collaboration and reuse to develop integrated tools.  

                                                
2  Source: http://infosthetics.com/
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An important distinction should be made between aesthetic and functional 

approaches to network visualizations in particular. Due to their complexity, or 

perhaps something inherent about networks themselves, visualizations of 

graphs have the unique property that their visual representation often 

conveys the feeling of complexity without functional utility. This may be a goal 

in itself.  

 

However, if the goal is to find or retrieve meaningful knowledge it is often 

necessary to supplement a purely graph-based visualization with other 

semantic attributes - as was done with the Netmap. This is especially 

important when dealing with semantic networks as simplifying grammatic 

structures with bidirectional links results in a loss of meaning present in the 

connections.  If the goal is functional, one must remain aware of what is lost 

when reducing meaningful networks to graphs. In this case, it is often better 

to provide multiple visualizations of different types to navigate the data. The 

Quanta network, for example, contains many overlapping hierarchies 

(existential taxonomy, classification taxonomies) which are not visible in a 

purely graph-based layout.  
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Figure 7.18. Network visualization on nested spheres 



224 

The final visualization in this thesis conveys a majority of the Quanta 

semantic database using nested spheres similar to phyllotactic trees in which 

nodes are iteratively arranged based on biological distribution patterns [7-24]. 

Due to the complexity of the network, and following the previous discussion, 

rather than taking a function approach this visualization was developed more 

for aesthetic reasons. As such no labels are shown. Displayed in Figure 7.18, 

the visualization uses the first eight thousand nodes of the Quanta ontology. 

The levels of the existential taxonomy of Quanta are placed on each sphere. 

Thus, the inner most sphere holds basic linguistic concepts: Noun, Verb, 

Adverb. The next sphere holds Physical and Non-Physical entities. The outer 

most sphere holds individual works of art, sculpture, or living organisms - 

specific instances of more abstract concepts.  

 

The goal of this visualization was to communicate the richness of semantic 

data and to express the similarity between cognition and dynamic data 

systems using a neurological metaphor. To explore this, an additional list view 

is introduced whereby the viewer may navigate through various concepts. As 

a concept is selected, all the semantic links which it touches are highlighted in 

the network. After a gradual decay, this "lighting" of the network fades away. 

Interestingly, for more abstract terms a larger portion of the entire network is 

lit up as the number of connected concepts is greater. The analogy to human 

cognition is clear, but is this because human thought is similar to dynamic 
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structures found in a machine? Or is it because we, as humans, have a 

tendency to mimic our current understand of ourselves in the mechanical 

systems we construct? Perhaps just the visual effect of blinking nodes in a 

network is reminiscent of neurological functioning. Yet we must wonder what 

specific relationships this has to reality. 

 

 

 

Level  
  (L) 

Quanta  
Nodes   
        (N) 

Sphere Area 
(SA) 
R = 1.1 * L 

Ratio 
(SA / N) 

Cumulative 
Nodes 

Cumulative 
Node Density 

1 3 15 5.07 3 1.858 
2 26 61 2.34 29 1.538 
3 74 137 1.85 103 1.461 
4 200 243 1.22 303 1.177 
5 316 547 1.20 619 1.125 
6 186 745 2.94 805 1.495 
7 1058 973 0.70 1863 1.026 

Tablee 7.1. Correlation between growth in data nodes for the current 
Quanta taxonomy and unit sphere surface areas (scaled by 1.1) 
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While developing this visualization, a unique correlation was found between 

number of nodes in the existential hierarchy and the surface area of each 

sphere, as shown in Table 7.1. This suggests that for certain types of data a  

spherical arrangement could allow 3D navigation of complex data with equal 

node density throughout the space. By combining a proportional surface 

placement technique such as circle packing with nested spheres, a constant 

average distance between nodes could be maintained despite the fact that 

the data sets grow exponentially at each level. Such an arrangement would 

allow clutter-free navigation of networks in a three-dimensional space. This 

technique was not attempted here, but could be an interesting direction for 

future research .3 

 

7.6. Knowledge Visualization and Cognition 

The visualization system developed here is built on basic principles of  

information visualization and human-computer interaction. There are the 

obvious affordances such as smooth navigation and zooming available in 

each visualization. In addition, buttons and combo boxes allow selection and 

toggling of important features to further increase usability. Color, images, and 

other feedback is designed to make the system easier to use. 

                                                
3 There are two criteria for such a technique. First, the nodes should be placed on nested spheres with a 
radius modified by a scaling constant: R = kL (where L = level). Second, on each sphere the nodes 
should be equally distributed. To achieve this, while also maintaining alignment with parent nodes, a 
suitable placement algorithm similar to treemaps or circle packing would need to be used but which 
was modified to function on the surface of a sphere. The current network visualization only meets the 
first criteria. Presently nodes at a given level are not distributed across the entire sphere surface. 
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This visualization framework also contains several novel aspects. Each 

visualization is dynamically connected to the hypergraph network of Quanta, 

thus giving access to rich semantic data. Queries for data, such as the display 

of sculptures (as a target) in the Timeline visualization, allow the system to 

limit the scope of the data. This process, visualizing selective data through 

database queries, is not novel [7-25]. However, each visualization may filter 

and restructure the data through the semantics of the hypergraph. For 

example in addition to target, which specifies the base dataset, the Timeline 

visualization loads events that fall with in a certain category. That is, events 

must match the semantics: 

   X has Subject (category) 

   X is a (target) 

 

Similarly, the Graph visualization uses semantic features present in the 

hypergraph to automatically determine which properties may be graphed. The 

visualizations are built on top of the hypergraph database. Therefore, each 

new visualization will have access to these semantic relationships. In this 

way, visualizations can allow for navigation beyond that provided by simple 

database queries. 

 



228 

An important theory of visual cognition is that visual short-term memory is 

used to hold temporary models of concepts which are too dense or complex 

to be understood in their entirety. In an interesting experiment, Philips and 

Baddeley show two large matrices of numbers to viewers for only a brief time 

[7-26]. The viewers are then asked to determine if any of the elements were 

different in the sets shown. The experimenters found that the viewers were 

able to determine missing elements at a rate higher than would be caused by 

chance. Since the participants did not have time to examine each element, 

they conclude that a form of visual short-term memory (VSTM) is used to 

create a temporary, abstract model of the data. 

 

The Quanta framework for visualizing semantic data is based on a similar 

model. A visualization in Quanta consists of temporary, short-term structures 

that correspond to the fundamental structural units in information 

visualization: graphs, trees and networks. Thus an individual visualization is 

analogous to visual short-term memory. For each query, a visualization 

dynamically rebuilds its own internal structures from the larger, more 

permanent information in the hypergraph database. The database in this case 

is analogous to objects in the real world. These ideas are shown in  

Figure 7.19 

 



229 

 

 

 

 

While datasets often connote simple structures, human knowledge consists of 

trees within trees, overlapping networks, quantitative and qualitative data, and 

temporal and spatial information all present simultaneously. The goal of the 

visual aspect of this thesis was to develop a system in which established 

design units such as treemaps, timelines, graphs and hyperbolic and network 

layouts become interchangeable building blocks that operate on and freely 

navigate deeper semantic structures. By developing a system that more 

closely resembles human cognition, it should be possible to build a 

knowledge resource that more closely matches the flexible of human thought.  

Figure 7.19. Analogies between human cognition and visualization 
systems. Dynamic structures and visual short-term memory are 
similar in that they provide temporary models of deeper semantics. 
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One way in which we might distinguish knowledge visualization from 

information visualization is through abstraction away from the data structures 

that currently define the field. While the primary object in information 

visualization is the structure, whether it be a list, a tree, or a graph, the 

primary object in knowledge visualization is the relationship (semantic link). 

Out of these links any number of trees and graphs might arise. These simpler 

structures provide momentary, multifacted understanding of the deeper 

meaning found in complex systems.  

 

Another way to define the distinction between knowledge visualization and 

information visualization is in terms of the data-semantic ratio. Visually a tree 

of living organisms shown via circle packing can convey only a single attribute 

in each circle: its name for example. There is little visual space for much 

more. Thus, the data as shown in the visualization has a low DSR (N 

elements with 1 attribute each). However, each organism is richly connected 

to many other concepts according to its morphology, geographic place, 

relationship in the food chain, and behavior. The actual data has a very high 

DSR (N elements with M attributes each). In developing general knowledge 

systems, a single visualization should be one among many temporary 

constructs that allow us to perceive complex data. 
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 Structure  DSR (4)    Modality Goal 

Sonofication structures low aural functional 

Scientific Visualization particulate (1)  low visual functional  

Information Visualization structural (2) low visual functional 

Knowledge Visualization relational (3) high visual functional (5) 

Information Aesthetics structural low visual aesthetic (6) 

Knowledge Aesthetics relational  high visual aesthetic 

1) Particulate: Datasets that contain discrete elements that map directly to spatial locations. Example: 
Cloud simulation, molecular structure.  
 
2) Structural: Refers to abstract yet specific data structures such as lines, trees, graphs and networks. 
Examples: Cone-trees, Treemaps, Hyperbolic network layout 
 
3) Relational: Refers to content which is highly relational. May all be contained in a semantic network 
but new techniques are needed to navigate patterns. Examples: encyclopedia articles, linguistic 
statements, thought. 
 
4) The Data-semantic Ratio (DSR) characterizes the degree to which relationships are present in the 
data. See Chapter 2. 
 
5) Functional: Communicative goal is to provide a clearer understanding of the object of study. The 
inform the view of that particular object, i.e. to education or enable research. 
 
6) Aesthetic: Communicative goal may go beyond explaining the data to other artistic purposes (social, 
reflective, critical) 

 

 

Table 7.2 summarizes this discussion on the various fields of information 

visualization. Sonofication is included as a reminder that visual interfaces are 

but one modality. While the discussion here has been primarily about 

functional  tools, Information and Knowledge Aesthetics are distinguished 

from visualization in that their communicative goals may differ.  

Table 7.2. Scientific, Information and Knowledge Visualization 
according to the features of structure, data-semantic ratio and goal. 
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The purpose of this chapter has been to investigate the field of information 

visualization and to present novel visualization techniques for semantically 

connected data. Several novel visualizations have been demonstrated 

including view-dependent comparative timelines, view-dependent circle 

packing, automatically generated graphs and an active network of semantic 

data on nested spheres. A general analysis of human cognition suggests that 

multiple, temporary visual structures are an important aspect of knowledge 

visualization. Finally, providing these visual systems with the data of rich 

semantic databases allows for more flexible and precise navigation of 

complex ideas, and further enables interdisciplinary research. 

 


