
Chapter 5

Creative Workflows for the Media Artist

5.1 Overview

The ways in which artists create art has changed dramatically over the past hundred

years. In the 1950s, following the invention of the computer, a group of scientists and

artists began exploring the production of images by digital means. From these begin-

nings, computers have dramatically come down in cost and software tools for making

art have become widespread. This has opened up a range of expressive possibilities,

and the variety of tools available cover a range of new techniques available to the media

artist. These possibilities include low-level programming, information aesthetics, design,

interactive art, artificial life, and rendering. This thesis considers the major choices in

workflow currently available to media artists and proposes an integrated tool to explore

these various dimensions simultaneously.

The goal of this work is to develop new creative workflows for media artists. In 2005,

the National Science Foundation sponsored a workshop to consider Creative Support

Tools across several different domains. Discussions covered creativity in tools for chil-

1



Chapter 5. Creative Workflows for the Media Artist

dren learning to program, engineers creating novel designs, users navigating the web,

and new media artists exploring visual and interactive art [Shneiderman et al., 2005].

They found that, more than other groups, media artists explored “risk-taking and sub-

versive attitudes” to express cultural acts, often resolved by artists developing their own

tools, where each of these tools embodies a particular technique for creating art.

The term workflow derives from a sequence of steps in manufacturing, a means of

production. While this description is appropriate in some ways, as the media artist

creates aesthetic objects using technology, the definition of workflow for the purpose of

this thesis is broadened to cover all the ways in which media artists explore or express

an idea through technology. A creative workflow is a way of generating, exploring, or

resolving a particular idea through technology. While a programming language might

be used to express an abstract sequence of steps, a workflow is defined more broadly to

resolve all the possible constraints available to the artist through creative choices.

One of the most common choices for the media artist is the programming language

being used. According to the definition above, however, the choice of language is just

one of the many dimensions along which a creative workflow may be resolved. Some

media artists choose to work with a particular language while others develop their own

[Reas and Fry, 2006]. However, there are many other dimensions along which a tool

can be expressive. A particular tool may support three-dimensional forms better than

another, or may be more suitable to interactive art. A primary contribution of this

2



Overview – Section 5.1

work is a consideration of specific dimensions of creative choice which are relevant to

media artists. The dimensions considered here include:

• 1) Programming and Language

• 2) Modality and Media

• 3) Performance and Computation

• 4) Motion, Complexity and Autonomy

• 5) Structure and Surface

• 6) Image and Idea

A particular workflow resolves each of these dimensions through a set of choices. As

discussed in Chapter 2, some of these choices may be inherent constraints determined

by the tool, while others may be creative constraints resolved by the artist. Workflow is

defined as the combination of these constraints and choices across the dimensions above.

The contribution of this work is to conceptualize tools for media art that function

along these dimensions simultaneously. The first generation of media artists had no

choice but to develop their own tools, since the first computers did not know how to

make images [Dietrich, 1986]. This drive to make ones’ own tools is now considered an

essential part of how media artists work, but should not be an exclusive requirement for

making art. Ideally, tools for the media artist should allow programming when desired

while also supporting the other available dimensions for expression. One motivation is

that this eliminates the repetitive work required in engineering ones own tools, allowing

the artist to work at a higher level. Another motivation is that tools that consider the

3



Chapter 5. Creative Workflows for the Media Artist

variety of workflows used by media artists cover a potentially broader expressive range

than any one particular tool or language. Thus a central question is how best to support

the creative work of media artists.

LUNA, a Language of Natural Animation, is developed to show that these creative

dimensions can be resolved together in an integrated tool, and its contribution is to

support a wide range of different techniques employed by media artists. LUNA is not

necessarily an ideal tool for media artists since every tool introduces its own inherent

constraints [Candy, 2007]. For example, LUNA does not necessarily go into great depth

either in particular structures (e.g. its support for highly detailed characters is limited)

or in particular modalities (e.g. its support for audio is limited). I assume these details

may be easily added later. Other potential limitations of LUNA will be considered later.

Instead, this work focuses on providing a context in which the dimensions above are

simultaneously resolved and made available.

5.1.1 Motivation

Motivations for this work come from several different directions. My own background

in art and computer science involved an exploration of a variety of forms. Early on I

studied generative art based on simple rules, imitating many of the early algorithmic

systems such as particle systems and Conway’s Game of Life. Later on I explored

physical sculpture and became interested in digital representations of form, volume,

and surface. This led to an interest in rendering and lighting, but also to automatically

4



Overview – Section 5.1

generating three-dimensional forms using dynamic algorithms. Unfortunately, while

sophisticated tools exist for three-dimensional forms (Maya, 3D Studio), and others

exist for algorithmic art (Processing, Max/MSP), I found few tools capable of combining

these in real-time systems. In addition, I also began to explore images, video, and other

media which I viewed as potential sources for generating unique sculptural forms. The

development of LUNA thus captures several dimensions and ideas which I found initially

difficult to separate as an artist.

The history of media art, modern art and computer graphics helps to resolve these as-

pects. Early artist-scientist pioneers, such as Michaell Noll, Ken Knowlton, George Ness

and Freider Nake, developed the first computer images using simple shapes [Dietrich, 1986].

Shapes such as lines and curve, Figure 5.1a, are the starting point for several new di-

rections. From this point, the vocabulary of shapes can be extended in three-dimesions

to curves, surfaces and volumes, as was done by Bresenham, Pierre Bezier, Ed Catmull

(Figure 5.1b) [Foley et al., 1997]. Once surfaces are established, other groups focused

on the rendering and lighting of these surfaces, including Bui Phong, James Blinn, Don

Greenberg, and Turner Whitted (Figure 5.1c). However, one can also take these basic

shapes and study their motion, resulting in dynamic objects as explored by William

Reeves (Figure 5.1d). With the presence of motion, unique behaviours are explored

by Craig Reynolds, James Whitney, and others (Figure 5.1e) [Levy, 1992]. Interaction

with basic shapes leads to real-time systems as investigated by Ivan Sutherland, Doug

Engelbart, and Alan Kay (Figure 5.1f). Treating the digital image itself as a structure,

5



Chapter 5. Creative Workflows for the Media Artist

Figure 5.1: Early history of the digital image, including a) shapes (Michael Noll),
b) surfaces (Ed Catmull), c) rendering (Bui Phong), d) motion (William Reeves), e)
behaviour (Craig Reynolds), f) interaction (Ivan Sutherland), and g) image processing
(Knowlton).

in which shapes are contained, results in the study of image processing, Figure 5.1g.

[Rosenfeld, 1983].

These fields define the basic ways in which the digital image may be manipulated

while, over time, their separation has resulted in distinct communities. Modern mo-

tion pictures and video games take advantage primarily of three-dimensional modelling,

lighting and rendering, relying on technical artists to manually create characters and

6



Overview – Section 5.1

textures to support a particular narrative. Algorithmic artists such as Harold Co-

hen, Jean Pierre Hebert, Roman Verostko and Vera Molnar, have explored program-

matic, non-representational aspects of image making by looking at motion and behaviour

[Verostko, 2006]. Information artists work with the database as a source for the layout of

shapes and forms. Similarly, interfaces in film and gaming change very gradually due to

their means of distribution, while interactive artists such as Ken Feingold, Golan Levin,

Michael Naimark, and Simon Penny tend to incorporate or even invent new interfaces

regularly in installation works.

A primary motivation for this thesis is to develop workflows that allow these different

practices to be combined in a single tool, to demonstrate that techniques among these

communities may be shared. In LUNA, for example, one goal is to incorporate modelling

and rendering typically found in animation software and to combine these with processes

for algorithmic, interactive, and performance art. Although the dimensions covered are

not designed to address media arts completely, for example aspects of database and web

art are not considered, the goal is to bring together several areas of digital art which

have evolved into distinct tools by integrating the dimensions along which these choices

are made.

This list of dimensions appears to share some similarities to studies of formal-

ism in art history. For example, according to Hatt, in the Principles of Art His-

tory Wolflinn presents formal properties “meant to provide general descriptive terms,

which would capture the development of artistic vision across countries and ages.”

7



Chapter 5. Creative Workflows for the Media Artist

[Hatt and Klonk, 1992] 1. Roger Fry develops a familiar set of formal elements in observ-

ing line, mass, space, light, color, and plane [Fry, 1926]. However, a critical difference

from these and the above list is that the formalist elements in art analysis are based on

style in order to understand art created using similar techniques across civilizations and

periods of time, not only to distinguish the works of art but to offer explanations for

why and how they were created by cultures in time [Preziosi, 1998]. While I also seek to

understand the historic aspects of media arts the dimensions proposed here are based

essentially on technique itself, and my primary contribution in not a reflective analysis

of works in media art but a workflow for integrating its techniques. Although many

of the design choices in LUNA are inspired by historic works of art, these dimensions

relate to choices in technique made by the artists during the creation of the work rather

than styles derived from looking at art after the fact.

When a sufficient number of examples are considered over time, it may be possible

to analyse style in a specific area, such as organic art for example. Steven Levy, in

his book Artificial Life, explores some of the historic aspects of this type of art and

studies the culture in which they developed [Levy, 1992]. Christian Paul, in Digital

Art, surveys several of the active areas of media art [Paul, 2003]. Although it is difficult

to distinguish style from technique since both are constantly changing in media arts,

such a study could be an interest area for future research.

1Wölfflin’s five dualities include 1) Linear versus Painterly, 2) Plane versus Recession, 3) Closed
versus Open, 4) Multiplicity versus Unity and 5) Absolute versus Relative Clarity

8



Overview – Section 5.1

Each of the current areas of media arts offers a different perspective on the construc-

tion of the digital image. Language, computation, modality, autonomy (behaviour),

structure, image and idea are the primary dimensions which are considered here from

the perspective of technique. The cultural significance of the digital image is not ad-

dressed here, nor the social effect of these abstract and scientific ideas. In addition the

impact of these techniques on society, which is the study of media theory, is generally

not addressed; although certain aspects of structuralism are relevant in examining tech-

nique. Finally, it is useful to mention that this is not a goal-oriented process since the

creation of a tool for media artists can never have an ideal or final form. Rather, the

goal of this work is to propose an integration of several of the dimensions of digital image

making which have diverged into separate disciplines over time, and to show that it is

possible to invent new tools which combine these. The motivation for this work is to

bring together communities engaged in creative image making by reducing the natural

boundaries that form between tools evolving in particular domains.

5.1.2 Evaluation

The evaluation of tools to support creative tasks can be difficult. The most im-

mediate form of evaluation of any tools is that it achieves the functionality it claims

to. With regard to the LUNA, the six dimensions above should be realized through

specific examples found in the system. Since each of these are treated as a dimension

along which choices are made, I consider each dimension as a collection of at least two

9



Chapter 5. Creative Workflows for the Media Artist

examples showing a range of behaviour. However, my argument is not only that tools

can be developed to generate specific examples, but that their integration will provide

better overall support for creative workflows among media artists. What I mean by

better support is a general increase in expressiveness, creativity, and ability to explore

interesting areas. How would this be evaluated?

Among the outcomes of the Creative Support Tools workshop was the discovery that

creative tools cannot be easily evaluated for the quality of the outcome. It is impossible

to say which tools support creativity to a greater or lesser extent:

“One important issue with the design of creativity support tools is how they can
be evaluated. How do you know if a tool is being helpful? Human-computer inter-
action professionals are used to measuring the effectiveness and efficiency of tools
[for specific goals], but how do you measure if it supports creativity? As discussed
above, tools that are not effective and efficient will probably hinder creativity, but
it isnt clear that the reverse will hold. To try to measure creativity, the Silk system
designers evaluated many different properties, including the number of different
designs produced, the variability of the components used, the variety of questions
about the designs from collaborators, etc. [Landay 1996], but these still do not
really get at the quality of the solution. It is still an open question how to measure
the extent to which a tool fosters creative thinking.” [Resnick et al., 2005]

While the authors explored the issue of evaluating creative tools in other domains,

this finding is especially relevant to media artists since the outcome of the tool is itself a

subjective work. Thus there is the added complexity that the quality of the tool cannot

be distinguished according to the objects it produces on a creative level. Fortunately,

the workshop participants found three criteria which were agreed to be a good relative

measure of creative tools. These are: 1) low threshold, 2) high ceiling, and 3) wide walls.

Low threshold means “that the interface should not be intimidating, and should give

10



Overview – Section 5.1

users immediate confidence that they can succeed”, high ceiling means that “the tools

are powerful and can create sophisticated, complete solutions”, and wide walls means

that “creativity support tools should support and suggest a wide range of explorations”

[Resnick et al., 2005].

How do these concepts map to creative tools for media artists? While we can agree

the visual interface should be simple to use, low threshold may also be taken to mean

that the underlying language expressed by the tool is also simple since media artists

may wish to work either in a programming language or the visual interface along the

dimension of language. The idea of ’high ceiling’ can have several interpretations. Does

this mean powerful in its ability to support different modalities (images, sound, etc.),

powerful in the structural detail it can achieve, or powerful in the processes it can

perform? I will consider each of these as they arise through examples. Finally, there

are several levels on which artists can explore a range of expressions. This may be

through the parameters to a particular system, parts of a particular object, or the

combination of these systems. Despite distinctions which must be resolved during their

evaluation, these criteria provide useful guidelines for evaluating creative tools relative

to one another.

LUNA is proposed as an integrated tool for media artists, which suggests that its

greatest improvements will occur over time with the active participation of a community

of users and developers.2. In the current design, a number of features are presented as

2To enable this, the core of LUNA will be released under the open source LGPL license for both
Windows and Linux, with the interactive editor released as a free executable for personal use (with
dynamically loaded user modules).

11



Chapter 5. Creative Workflows for the Media Artist

potential directions. For example, along the dimension of modality LUNA has icons for

audio, video and data. In these areas integration has been considered and designed into

the system so that practical details may be completed more easily in the future. During

the evaluation of LUNA I thus distinguish several areas of development: 1) inherent

limitations of the language, 2) potential ideas which were not explored in any way, 3)

partial features which were considered and designed into the basic language of LUNA

for future growth, but not fully implemented, and 4) features which were completed.

The methodology used in this study is to examine each dimension, to explore its

significance for media artists with historic examples, to see how well LUNA integrates

that dimension into the overall workflow of the tool, to evaluate the criteria of low

threshold, high ceiling, and wide walls, and to evaluate the system according to the

actual and potential choices it makes available to the artist.

5.2 Programming and Language

5.2.1 Procedural Languages

The first two exhibits of computer generated images showed works by Bela Julesz and

Michael Noll at the Howard Wise Gallery in New York in 1965 (Computer Generated

Pictures), and by George Nees and Frieder Nake at the Galerie Niedlich in Stuttgart,

Germany the same year [Dietrich, 1986]. All of the early pioneers were also scientists

working in institutions such as IBM and Bell Labs in order to provide access to the

large, costly computers need to make these images. For the first generation of computer

12



Programming and Language – Section 5.2

artists, direct programming of the computer was a necessity. Michell Noll attempted to

simulate constructivist and abstract works of art using very basic mathematical shapes,

in images such as Bridget Riley’s Painting Currents, 1996 where he reproduces the op

art of Bridget Riley. Using the density of type to reproduced tone, Ken Knowlton and

Leon Harmon created Studies in Perception I, 1996, the first digitized and reproduced

nude figure. Initial collaborations between artists and engineers took place in Cyber-

netic Serendipity, an exhibit at the Institute of Contemporary at in London curated

by Jasia Reichard [MacGregor, 2002]. Computing at this time had a very high thresh-

old, and artist-scientists were required to program in low-level languages using basic

mathematics.

To facilitate making graphical images scientists began by developing extensions to

generic programming languages. George Ness and Leslie Mesei added graphics com-

mands to ALGOL 60 and to Fortran in 1969. Eventually, work by Ken Knowlton and

others led to more complete graphic languages. Although they simplified the work for

scientists, they were still found to have a high threshold for artists.

“As an animation language it provided instructions for several motion effects as
well as for camera control. Knowlton had initially hoped that artists would learn
the language to program their own movies, but he came to realize that they usually
wanted to create something the language could not facilitate, and they also shied
away from programming... None of the graphics languages mentioned received
widespread use, partly because their implementation was machine dependent and
also because each language was restricted in scope.” [Dietrich, 1986]

Interactive sketching introduced by Ivan Sutherland in 1963, which would allow

for direct drawing of shapes using a pen, would not be widely available for another

13



Chapter 5. Creative Workflows for the Media Artist

decade [Sutherland, 1963]. For the algorists in the 1970s, these constraints were not

a major barrier as the artist’s interests contained a strongly constructivist element, so

the use of algorithm and mathematics coincided with their creative goals. For artists

such as Harold Cohen, Roman Verotsko, and Manfred Moher, programming became the

abstract language “through which they created a new reality” [Verostko, 2002]

In a relatively short time, computing reduced in cost and better graphics hardware

became available. Through the 1980s graphical languages proliferated. GINO, Graph-

ical Input/Output System, abstracted the concept of logical output and input devices.

Languages such as GPGS and PHIGS supported hierarchical object arrangements, al-

lowing for descriptive scenes [van Dam, 1998]. In the 1990s, OpenGL and DirectX were

the first languages to be widely used on new graphics hardware, built first as extensions

to the generic C/C++ language. Graphical languages finally became widespread in the

mid 1990s.

Programming directly in text-based languages continues to be an important way

to create visual images as these languages can allow the artist greater control over

the specific rules used for indicating new behaviours. To reduce the high threshold

of learning full programming languages, Casey Reas and Benjamin Fry introduced the

Processing language to promote image making as a way to teach programming in 2001

[Reas and Fry, 2006]. A sample program in Processing is shown in Figure 5.2. In

LUNA text-based programming in C/C++ allows authors to create new interactive

nodes, discussed in further detail with the introduction of visual languages below.

14



Programming and Language – Section 5.2

Figure 5.2: Text-based authoring environment in Processing.

Graphics libraries are now available in many other generic text-based languages such

as Python, C/C++, Flash and Java (on which Processing is based). Although the use

of text-based languages continues to grow as more media artists learn to program, the

threshold for achieving complex forms using these languages is still high. While it may

be that media artists should learn programming as a part of an education in media

arts, it does not necessarily follow that all media artists wish to create exclusively by

algebraic or procedural programming.

15



Chapter 5. Creative Workflows for the Media Artist

5.2.2 Visual Languages

Figure 5.3: Con Man, an early visual language for graphics by Paul Haeberli in 1988.

The development of Ivan Sutherland’s Sketchpad in 1963 led to the first generation

of direct interaction technologies. Drawing programs allowed designers and animators

to manipulate images manually. In 1968, Ken Pulfer and Grant Bechtold of the Na-

tional Research Council of Canada created the first hand drawn computer movie entitled

Hunger by drawing each frame using a wooden mouse. “Markup” and “Superpaint”

were the first drawing programs by William Newman and Dick Shoup from research

based at Xerox PARC. Myers surveys a number of other parallel developments in early

computer interaction [Myers, 1998]. While drawing and sketching are the first obvi-

ous uses of direct interaction with machines, visual interfaces for computational tasks

16



Programming and Language – Section 5.2

began with visual programming languages (VPL). Early visual languages had similar

constructs to text-based languages, and contained iconic representations of mathemat-

ical operators, loops and conditionals. A key concept which distinguishes VPLs from

text-based programming is the introduction of nodes which allow logical operations to

be encapsulated and modularized, so that data is viewed as flowing through a visual

representation of a set of tasks. An early system which experimented with visual lan-

guages to perform image processing is ConMan [Haeberli, 1988]. A survey of generic

visual languages for goal-oriented tasks, such as ARK, VIPR, Prograph and IBM Data

Explorer, can be found in Boshernitsan and Bownes [Marat and Downes, 2004].

The idea of the media artist as programmer is an on-going trend, so the need for

visual languages for artists is relatively new. Interactive artworks, such as A-Volve by

Sommerer & Mignonneau (1994), use programming to achieve a particular, dynamic re-

lationship between the art work and the viewer. This usually requires artist/engineering

collaborations since the programs are specific to the installation. A generalized approach

to media arts would be to treat each type of interface device as a building block with

which an exhibit is constructed. Edmonds et al. explore the idea of what tools might

be best for media artists:

“A fundamental question that we have been considering is, what kind of environ-
ments best support the development of digital art? There is one answer to this
question which, although it may sound a little strange, is, nevertheless, appro-
priate. In art and technology environments, we need environments for building
environments.” [Edmonds et al., 2004]

17



Chapter 5. Creative Workflows for the Media Artist

An interactive system mentioned by Edmonds is Max/MSP, created by Cycling ’74

and originally written by Miller Puckette (author of PureData), Figure 5.4. Designed

for audio synthesis, Max/MSP is a visual language that can generate interactive art

using an extension called Jitter. One key contribution of Max/MSP/Jitter is that it

allows for many different devices to control audio-visual events by treating all data in

the system as a signal. David Wessel and Matthew Wright add support for gestural

interfaces to Max/MSP by creating Open Sound Control, a communications protocol

that allows signals and events to move from device to synthesis, even between remote

computers [Wessel and Wright, 2002]. This enables the media artist to work with many

different input devices, discussed in more detail in the next section.

Figure 5.4: Two visual languages for media artists, Max/MSP and Soundium.

18



Programming and Language – Section 5.2

For artists interested in three-dimensional visual forms, the generalization of data

as signal may present some problems. First, three-dimensional forms are represented

by computers in a particular way, by using verticies, edges and faces (one possible

way), so they are not easily encoded as signals. For example, although it is possible

to represent a three-dimensional tree structure in Max/MSP, the designer must author

a special object to ’encode’ each type of geometry. In addition, this encoding requires

that the artist-user must continually remember the type of the data as it flows through

the system. Finally, the signal processing metaphor results in a visual language which

is low-level, consisting of operators and expressions as found in generic programming

languages. Although this makes it expressive, it also requires mathematical thinking to

understand a Max/MSP patch.

Several top-level decisions drove the design of LUNA, with a special emphasis placed

on designing an intuitive interface for artists unfamiliar with mathematics or logic. This

is embodied in several workflow principles during the project: 1) creative expressiveness

in the interface should not require mathematical expressions or logic, 2) the interface

should express high-level concepts first, and particular details only on demand, 3) the

language should be capable of complex structures and multimedia.

These constraints, especially the first, led to a visual language inspired by the board

game Scrabble, which achieves a huge combinatorial variety in word letterings purely

through the relative placement of tiles. This suggested a node-based workflow incor-

porating large iconic tiles with a minimum of extraneous information (i.e. no numbers

19



Chapter 5. Creative Workflows for the Media Artist

or values on the graph). The goal of creating a high-level interface helps the design by

supporting the idea that each node should represent a particular aesthetic task. A key

design of the language which led to its implementation was the discovery that nodes can

represent both their structure and behaviour in a way that leads to natural extension

of the language. The structure of the data is carried from node-to-node in the graph,

while the behaviour determines how each input is processed. In fact, these two ideas

are the only textual information presented in the graphical interface. The icon itself

expresses a pictographic idea of the behaviour that will occur, also written in large type

above the tile, while the structure of the output is shown in smaller type, depicted in

the overall color of the tile.

The graph design of LUNA is not the only way to express structure. In computer

graphics the relationships between objects, their physical proximity and orientation

in two or three-dimensions, is commonly represented using a scene graph. The scene

graph became widely used after IRIS Inventor in 1993 to describe scenes consisting

of different objects [Strauss, 1993]. Separately from the audio-signal processing com-

munity, the graphics community found that objects in scene graphs can also be ex-

pressed in visual languages to facilitate on-screen interaction. Objects in these visual

languages, such as Maya’s Hypergraph, represent geometric relationships and transfor-

mations [Bar-Zeev, 2007]. Procedural systems such as Houdini express both behaviour

and structure, but the language does not make it clear what these structures are, and

may require a series of intermediate steps to change geometry type (see Chapter 4).

20



Programming and Language – Section 5.2

A recent approach to this duality is found in Soundium/Decklight, developed by

Corebounce 3.

“There is a problem we have not dealt with: As a result from unifying multiple
graph-based processing entities in a single graph, we have to deal with different
graph processing semantics: For example an audio graph, which is typically flow-
based, is processed in a different manner than a scene graph (which is basically an
object hierarchy). The question is, how we deal with the coexistence of different
semantics in the same graph? Our approach is to segment the global graph into
individual subgraphs, which correspond to different semantics. Of course, this
segmentation will not be made visible to the application layer.” [Arisona, 2007]

The authors introduce a design tree to express high-level artistic ideas which are

used to generate these processed sub-graphs [Muller et al., 2007], see Figure 5.4. This

workflow enables simultaneous audio and live visuals (video), interactive editing during

a performance, with examples that focus primarily on transformations such as rotation,

translation, and scaling that are common to scene graph languages. This approach to

multimedia, while it resolves many challenges in simultaneous audio-visual processing,

may make it difficult to address behavioural changes in more complex three-dimensional

forms.

The scene graph problem is resolved in LUNA at a high level by allowing each node

to contain its own scene graph, while the language conveyed through a combination of

nodes expresses dataflow. Unlike Max/MSP the structure of each object is apparent

in the tile color as information moves through the graph. Thus each single tile in

LUNA represents not just one object, but arbitrarily many, which allows the system to

3Pascal Müller, Stefan Müller Arisona, Simon Schubiger-Banz and Matthias Specht, from ETH
Zurich, University of Fribourg, and University of Zurich

21



Chapter 5. Creative Workflows for the Media Artist

express complex jointed or articulated structures (a scene graph) while also permitting

multimedia processes which operate on these. Due to the storage of these structures

(see Chapter 4), modifications to color, position, and orientation can be made at any

point in the graph.

Figure 5.5: Text-based authorship of a point Combine node, and example of its use in
the LUNA visual interface.

Users of LUNA may interact with programming at two levels. The first is by author-

ing new nodes in the text-based language C/C++ to create new fundamental behaviours.

Although Processing was designed to have a lower threshold for text-based languages,

node authorship in LUNA is simpler than generic C/C++ on which LUNA is based

since it provides all the data structures needed to create complex geometries, Figure

22



Modality and Media – Section 5.3

5.5. The second means of creative interaction is through the visual language by mixing

and combining existing tiles. Using the visual interface may have a lower threshold

than any other language currently available to media artists since only a single click-

drag motion is required to connect two tiles. 4 The system was even shown to a ten

year old, who created complex systems simply by matching up input and output colors

of the tiles. From the perspective of creative workflow, this low threshold is achieved

through the design constraint of supporting non-technical users.

5.3 Modality and Media

Media artists desire to work in a wide variety of ways using different kinds of media,

and different interface devices. This dimension of creativity has two particular aspects.

Media may be defined as the structure of data, while modality is defined in human-

computer interaction as a physical system or device that generates a particular media

[Bolt, 1980]. For example, a video camera is the modality which produces the media

of video. While this may seem obvious, devices like video cameras produce both audio

and video, while a music keyboard can generate media which is either audio (a signal)

or midi (a sequence of notes). In addition, software may process many types of media,

or transcode one media into another [Manovich, 2001].

Max/MSP resolves the issue of media by treating every media type as a signal. This

simplifies the base design of the software, and focuses attention on the audio signal,

4At present, node authorship requires rebuilding of LUNA, although this is expected to change soon
as new versions will allow dynamic linking.

23



Chapter 5. Creative Workflows for the Media Artist

but places a burden on patch developers to handle media other than audio. This is

partially alleviated by a large development community, but support for fundamental

media types such as meshes or materials is difficult as the community must agree to a

library standard.

Figure 5.6: Taxonomy of classes and currently implemented nodes in LUNA.

The design principle for media in LUNA is that each node, individually a) knows

what it is, b) knows what it requires, and c) knows what it produces. For example,

to make a forest one must know where to plant the trees (point locations), and what

the trees should look like (joint structure). To use a computer mouse to change the

brightness of an image, one must know the position of the mouse (a point), and the

24



Modality and Media – Section 5.3

input image. Figure 5.6 shows a hierarchical map of different media in LUNA. Notice

that trees, characters, meshes, and curves all have points as a base class, which implies

that any process that operates on points - a bend or twist for example - can operate

on all of these objects. There is an interesting similarity between this taxonomy and

the early history of the graphics in Figure 5.1, which further supports this architecture

as a way of manipulating the digital image in different ways. Although many higher

level media types such as audio and events are not yet implemented, as indicated in the

figure, this vocabulary of data structures provides a great deal of flexibility.

Figure 5.7

The primary toolbar in LUNA selects among different media types (structures),

while the secondary toolbar provides a choice of processes for generating that particular

type (behaviour), as shown in Figure 5.7. Attention was placed on geometric media

types, such as points, lines, curves and meshes, to support the author’s interest in

sculptural form in real-time systems. Choices made in implementing particular processes

are discussed in the next chapter. One key goal of the media structures at this level

25



Chapter 5. Creative Workflows for the Media Artist

is the ability to distinguish between disconnected points, articulated structures and

surfaces, a feature common to graphics systems for modelling three-dimensional forms

such as Houdini, but not currently found in frameworks for real-time multimedia such

as Max/MSP or Soundium.

Figure 5.8: Detailed view of connections in various visual design platforms. Colored
tabs in LUNA indicate changes in the type of media as it flow through the system.

A unique aspect of LUNA is that inputs are handled by each object. Unlike other

media frameworks the type is not fixed by the base system but enforced by individual

nodes, thus LUNA may be described as a loosely-typed visual dataflow language 5.

Figure 5.8. shows how inputs are configured in Houdini, Max/MSP, Soundium, and

LUNA. What is the type of media flowing through each example in figure 5.8? Color

indicates type in LUNA and this is reflected in the design color of each node, making

it easy to identify what media is needed for a particular tile to function. This design

5The term loosely typed comes from generic text-based languages that do not require the type of a
variable to be explicitly stated.

26



Live Performance and Computation – Section 5.4

lowers the threshold for use of the system by visually re-enforcing the grammar of the

language.

The data types supported in any computer language are a basic part of its specifica-

tion. Along this dimension, LUNA allows the artist to work with lines, points, curves,

surfaces, images and materials (shaders) better than other real-time media systems,

already providing a high ceiling in terms of potentially realized structures. Other types

such as audio, database input, and volumetric data, are considered by the architecture

and may be implemented at the level of text-based authorship by a community of de-

velopers in the future. For users of the visual interface, low threshold and wide walls

are fostered by the tile design and colored tabs which indicate media type as one works.

5.4 Live Performance and Computation

The classical model for the exhibition of the image is the museum, a place where

final images are presented as objects of appreciation. More recently, film and gaming

have partially displaced the still image with dynamic and interactive forms as a way

of communicating with the viewer, while media artists in the traditional of disc and

video jockeys explore live performance as a venue for new experiences. For visual art,

live performance was made possible by new developments in computer graphics such

as the Graphics Processing Unit (GPU), a computer chip dedicated to the function of

rapidly generating images. In the traditional model of computing, performance was

based on CPU clock rate, which meant that the extent of calculations that could be

27



Chapter 5. Creative Workflows for the Media Artist

performed was directly related to computing power, which limited real-time interaction

to all but the simplest tasks. With the advent of the GPU calculations can be performed

in parallel so that computation is no longer limited by clock rate.

One of the implications of GPUs, which are now being used for many other tasks

besides graphics calculations [NVision], is that computing resources can be targeted

toward several goals within the same system simultaneously rather than treating each

step as a sequence [Parallel Processing for the Masses]. The implication of this for

media artists is that live performance is no longer dependent on how much computing

power one has, it is a dimension of choice along which the artist may focus various

computing resources. This concept of managing computing power is common in the

gaming community, where there is a finite budget for graphics, audio, game play, and

interaction which must all be realized in 1/30th of a second [Gaming timing pie chart].

Historically, the use of computing power is one of the fundamental distinctions

between different types of graphics tools. Systems such as Maya, 3D Studio MAX, and

Houdini all interface with offline rendering software capable of producing very detailed,

accurately illuminated images using as much time as needed, while live performance tools

such as Max/MSP, VVVV, and Soundium use computing resources to perform simpler

tasks in a very short time (real-time). In the future, the introduction of GPU computing

may allow large computations to also be performed very rapidly, which implies that

future tools could reduce the distance between live performance and detailed imaging.

28



Live Performance and Computation – Section 5.4

Figure 5.9: Profiling in LUNA. Node profiling shows CPU/GPU resources used for
each object in the user graph. Render profiling shows the resources used by the CPU
for computation and GPU for rendering.

LUNA introduces several novel features to encourage this convergence. First, ren-

dering in LUNA makes heavy use of the GPU to perform deferred shading, a real-time

rendering technique capable of achieving realistic results that were previously only pos-

sible with offline methods [Deferred shading]. Secondly, the visual language includes

dynamic profiling, a technique for measuring computational load. Node profiling shows,

using vertical bars, how much computing power is being allocated to each node in the

LUNA graph, Figure 5.9. Render profiling shows how time slices are allocated to the

CPU and GPU. The vertical green bars represent computation of a each tube shape in

the image, orange is a transfer of data from CPU to GPU (and thus lost time), and blue

29



Chapter 5. Creative Workflows for the Media Artist

represents rendering on the GPU (making of the image). These blocks are repeated

three times to compute shadow and output for a two-screen image.

To my knowledge, LUNA is the first system for media artists that gives immediate

feedback on how computing resources are used. These profiling results already suggest

several improvements to the system. For example, the repetition of vertical bars in-

dicates that too much time is being spent on geometric calculation of the Loft node,

making this an ideal candidate for authoring this process on entirely on GPU. Some

nodes already support this, such as the Fluid system, which can run on either the CPU

or the GPU [Hoetzlein].

More importantly, the artist has direct control over how computing power is allo-

cated to different details in the image. Each node supports the concept of a maximum

count, a set limit on how many objects it will process regardless of how much data it

receives. In this example, even though the Fluid system is simulating 4000 particles to

the drive the motion of the tubes, the Loft node is generating only 200 tube surfaces,

restricting the flow of data to a manageable level while keeping the output interesting.

At present, the artist controls the maximum count of each node through the interface.

Although several newer platforms, such as Amira, are offering high performance

solutions for interactive visualization of large datasets, see Figure 5.10, one major con-

straint of artist systems such as Maya, Houdini, Max/MSP or Processing is that it is

fairly easy to stall the system, making it appear to crash, by simply asking it to com-

pute more than it has power to at an interactive rate. In Maya, for example, creating

30



Live Performance and Computation – Section 5.4

Figure 5.10: High-performance computing in Amira, a system dedicated to interactive
manipulation and visualization of scientific datasets.

a particle system of more than 100,000 particles can cause this. In the future, due

to LUNA’s profiling design, it will be possible to have LUNA itself dynamically adjust

maximum counts to automatically determine scene detail so that the system never halts

in this way. Since the maximum count can be controlled, and the profiler can calculate

the time required for a given node, the rendering system could create a feedback loop

where the detail of the slowest object is reduced dynamically.

With the advent of parallel computing using GPUs, it is likely that live performance

by media artists will change dramatically in the next decade. In addition to providing

tools that give the artist direct control over allocation of resources, LUNA is demon-

strably faster than other systems at certain tasks (see Chapter 5) due to its dataflow

architecture.

31



Chapter 5. Creative Workflows for the Media Artist

5.5 Summary

In retrospect this chapter has focused on three dimensions of media frameworks that

do not relate to the content of the system. Language syntax, data type (media), and

performance establish the basic grammatic rules in which meaning can be potentially

realized by any computing language. In a traditional view of the media application these

rules are found together with specific tools. For example, the syntax of Photoshop

is the image, while its operations are all image processing tasks. However, with the

development of languages for interactive multimedia the syntax may be so broad that

the range of tasks is continually changed by future users, at which point its output

cannot be predicted by the inventor since it becomes an open system. At present LUNA

generates shapes and tubes with a particular style, but this is because of short-term

content decisions, discussed in the next chapter, rather than due to the visual language

itself. Interestingly, from the perspective of evaluation criteria, the only criteria directly

affected by the ’open ended’ aspect of the LUNA language is high ceiling. The ceiling, or

expressive power, for a visual language cannot be known in advance since the vocabulary

can continue to evolve.

This still leaves a question: How do we evaluate languages for media artists? First,

future content and changes in style should be supported by allowing node authorship

(making new nouns) in addition to visual authorship within the language (making noun

phrases), as is the case with LUNA. Secondly, what is the threshold for using the system?

How easy is it to learn the language? The constraint of a non-mathematical interface

32



Summary – Section 5.5

in LUNA’s visual language led to choices for a minimal design, specific use of color, and

simplicity. Finally, how flexible are the range of ideas one can explore? How easy is it

to change ideas? Wide walls relates to the flexibility of the language, which is realized

in LUNA through the combinatoric connections between tiles.

Media frameworks may also be evaluated according to their limitations. A sim-

ple guide in relation to the goals of media artists concerns modality. Max/MSP and

Soundium are limited in their support for three-dimensional forms. LUNA supports

such forms but is limited in its support for audio, although this is an area which was

designed to be expanded in the future. A deeper question relates to constraints of the

language itself: Despite the community authorship of objects, what content might be

implicitly unavailable in the system? In media frameworks this is usually not discovered

until the vocabulary has been sufficiently explored by others. For example, in the future

LUNA could handle complex geometries, real-time displacement, audio, and volumetric

data as a source of input through community authorship. Although the following is a

guess, the inherent limits of the LUNA language may reside at level of co-dependence

between two complex systems, such as a tree structure growing along an abstract geo-

metric surface which is itself dynamically changing. Suffice to say that LUNA achieves

the workflow goals of low threshold, high ceiling, and wide walls based on the current

interface design without knowing where its ceiling lies. In the future, as with any lan-

guage, it is hoped that the system continues to evolve beyond the initial content defined

by the author.

33



34



Bibliography

[Ades, 1994] Ades, D. (1994). Andre Masson. Ediciones Poligrafa, S.A. Rizzoli Inter-

national Publicaitons.

[Arisona, 2007] Arisona, S. M. (2007). Live performance tools. Digital Art Techniques.

ACM SIGGRAPH 2007. Course Notes.

[Bar-Zeev, 2007] Bar-Zeev, A. (2007). Scenegraphs: Past, present, and future.

http://www.realityprime.com/scenegraph.php, accessed June 2010. Online article.

[Benjamin, 1936] Benjamin, W. (1936). The work of art in the age of mechanical re-

production. zeitschrift fr sozialforschung.

[Bolt, 1980] Bolt, R. A. (1980). Put-that-there: Voice and gesture at the graphics

interface. In ACM SIGGRAPH, pages 262–270, New York, NY.

[Candy, 2007] Candy, L. (2007). Constraints and creativity in the digital arts. Leonardo,

40(4):366–367.

35



Bibliography

[Dietrich, 1986] Dietrich, F. (1986). Visual intelligence: The first decade of computer

art (1965-1975). Leonardo, 19(2):159–169.

[Edmonds et al., 2004] Edmonds, E., Turner, G., and Candy, L. (2004). Approaches to

interactive art systems. In ACM SIGGRAPH, pages 113–117, New York, NY.

[Enzenberger, 1974] Enzenberger, H. M. (1974). Consitutents of a theory of the me-

dia. In The New Media Reader, ed. Noah Wardrip-Fruin and Nick Montfort (2003).,

Cambridge. The MIT Press.

[Falkenheim, 1980] Falkenheim, J. V. (1980). Roger Fry and the Beginnings of Formalist

Art Criticism. UMI Research Press, Ann Arbor, Michigan.

[Foley et al., 1997] Foley, J. D., van Dam, A., Feiner, and Hughes (1997). Computer

Graphics: Principles and Practice. Addison-Wesley Publishing Co.

[Fry, 1926] Fry, R. (1926). Transformations: Critical and Speculative Essays on Art.

Chatto & Windus, London.

[Greeley, 2006] Greeley, R. (2006). Surrealism and the Spanish Civil War. Yale Univer-

sity Press, London, UK.

[Haeberli, 1988] Haeberli, P. E. (1988). Conman: a visual programming language for

interactive graphics. SIGGRAPH Comput. Graph., 22(4):103–111.

[Hatt and Klonk, 1992] Hatt, M. and Klonk, C. (1992). Art History: A critical intro-

duction to its methods. Manchester University Press, p. 77, New York, NY.

36



Bibliography

[Huhtamo, 2006] Huhtamo, E. (2006). Twin-touch-test-redux: Media archaeological

approach to art, interactivity, and tactility. In In MediaArtHistories, Ch. 5., page 71.

[Levy, 1992] Levy, S. (1992). Artificial Life. Pantheon Books, New York, NY.

[MacGregor, 2002] MacGregor, B. (2002). Cybernetic serendipity revisited. In Creativ-

ity & Cognition, Oct 14-16., Loughborough, Leic, UK.

[Mandelbrot, 1982] Mandelbrot, B. B. (1982). The Fractal Geometry of Nature. W. H.

Freeman, 1 edition.

[Manovich, 2001] Manovich, L. (2001). The Language of New Media (Leonardo Books).

The MIT Press.

[Manovich, 2007] Manovich, L. (2007). Abstraction and complexity. In MediaArtHis-

tories., Cambridge. The MIT Press.

[Marat and Downes, 2004] Marat, B. and Downes, M. (2004). Visual programming

languages: A survey. UC Berkeley. Technical Report: CSD-04-1368.

[Mignonneau and Sommerer, 2005] Mignonneau, L. and Sommerer, C. (2005). Design-

ing emotional, metaphoric, natural and intuitive interfaces for interactive art, edu-

tainment and mobile communications. Computer Graphics, 29(6):837–851.

[Muller et al., 2007] Muller, P., Arisona, S. M., Schubiger-Banz, S., and Specht, M.

(2007). Interactive editing of live visuals. In Advances in Computer Graphics and

37



Bibliography

Computer Vision. Communications in Computer and Information Science, 2007, Vol

4, Part 5, p. 169-184.

[Murphy, 2000] Murphy, J. (2000). Ritual resolution.

http://www.michaelrees.com/pdf/MURPHY.pdf, accessed June 2010. Lecture

notes.

[Myers, 1998] Myers, B. A. (March, 1998). A brief history of human computer interac-

tion technology. ACM interactions., 5(2):45–54.

[Noll, 1966] Noll, A. M. (1966). Human or machine: A subjective comparison of piet

mondrian’s ”composition with lines” (1917) and a computer-generated picture. The

Psychological Record, 16(1-10).

[Paul, 2003] Paul, C. (2003). Digital Art. Thames & Hudson.

[Preziosi, 1998] Preziosi, D. (1998). The Art of Art History: A critical anthology. Ox-

ford University Press.

[Puckette, 2002] Puckette, M. (2002). Max at seventeen. Computer Music Journal,

26(4):31–43.

[Reas and Fry, 2006] Reas, C. and Fry, B. (2006). Processing: programming for the

media arts. AI & Society, 20(4):526–538.

[Reed, 1996] Reed, C. (1996). A Roger Fry Reader. University of Chicago Press,

Chicago.

38



Bibliography

[Rees, 1999] Rees, M. (1999). Words around objects: The metaphors of new media.

http://www.michaelrees.com/pdf/PARIS.pdf, accessed June 2010. Lecture notes.

[Resnick et al., 2005] Resnick, M., Myers, B., Nakakoji, K., Schneiderman, B., Pausch,

R., Selker, T., and Eisenberg, M. (2005). Design principles for tools to support

creative thinking. NSF Workshop on Creative Support Tools. June 13-14.

[Rosenfeld, 1983] Rosenfeld, A. (1983). Picture processing: 1982. Computer Vision,

Graphics, and Image Processing, 22:339–377.

[Shneiderman et al., 2005] Shneiderman, B., Fischer, G., Czerwinski, M., Myers, B.,

and Resnick, M. (2005). Creative support tools. NSF Workshop on Creative Support

Tools. June 13-14.

[Sommerer and Mignonneau, 2001] Sommerer, C. and Mignonneau, L. (2001). Model-

ing complex systems for interactive art. Complexity International, 8.

[Strauss, 1993] Strauss, P. S. (1993). Iris inventor, a 3d graphics toolkit. SIGPLAN

Not., 28(10):192–200.

[Sutherland, 1963] Sutherland, I. E. (1963). Sketchpad: A man-machine graphical com-

munication system. In AFIPS Conference Proceedings 23, pages 323–328.

[van Dam, 1998] van Dam, A. (1998). Some personal recollections on graphics stan-

dards. In The History of Computer Graphics Standards Development.

39



Bibliography

[Verostko, 2002] Verostko, R. (2002). Algorithmic fine art: Composing a visual arts

score. In From Explorations in Art and Technology, by Linda Candy and Ernest

Edmonds., page 131, London, UK. Springer-Verlag.

[Verostko, 2006] Verostko, R. (2006). The algorists, historical notes.

http://www.verostko.com/algorist.html, accessed Sept 2010.

[Wessel and Wright, 2002] Wessel, D. and Wright, M. (2002). Problems and prospects

for intimate musical control of computers. Computer Music Journal, 26(3):11–22.

40


