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Chapter 4. Procedural Modeling of Complex Objects using the GPU

4.1 Introduction

Procedural modeling involves the use of functional specifications of objects to gen-

erate complex geometry from a relatively compact set of descriptors, allowing artists to

build detailed models without manually specifying each element, with applications to

organic modeling, natural scene generation, city layout, and building architecture. Early

systems such as those by Lindenmayer and Stiny used grammatic rules to construct new

geometric elements. A key feature of procedural models is that geometry is generated as

needed by the grammar or language [Lindenmayer, 1968] [Stiny and Gips, 1971]. This

may be contrast with scene graphs, which were historically used in systems such as

IRIS Performer to group static geometric primitives for efficient hardware rendering

of large scenes [Strauss, 1993] [Rohlf and Helman, 1994]. Scene graphs take advan-

tage of persistent GPU buffers, and reordering of graphics state switches, to render

these scenes in real time, and are ideally suited to static geometry with few scene

changes. A more recent trend is to transmit simplified geometry to graphics hard-

ware and allow the GPU to dynamically build detailed models without returning to

the CPU. This technique has been successfully applied to mesh refinement, charac-

ter skinning, displacement mapping, and terrain rendering [Lorenz and Dollner, 2008]

[Rhee et al., 2006] [Szirmay-Kalos and Umenhoffer, 2006]. However, it remains an open

question as to how to best take advantage of the GPU for generic procedural modeling.

Several early procedural systems developed from the study of nature. L-systems,

introduced by Lindenmayer and Prusinkiewicz, use grammars based on string substitu-
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tion to model plants [Lindenmayer, 1968]. Kawaguchi models shells, fossils and branches

by iteratively and recursively constructing complete models from transformed shapes

[Kawaguchi, 1982]. A method related to fractal geometry is employed by Stiny, who

constructs models of painted regions using shape grammars that replace shape patterns

with other shapes. Grammars have also been applied to the modeling of building ar-

chitectures [Müller et al., 2006], whereby large volumes such as walls are replaced with

windows, doors and framing. While grammars have a range of applications, they are

often limited to a certain class of objects, and not easily animated, and it is difficult to

determine how their evaluation might be parallelized.

An alternative to grammars is to rely on programming languages themselves to

generate complex forms. Synder uses a C-interpreter to model volumes and surfaces

for CAD objects, with opreators that can perform a variety of tasks, including con-

straint solving, integration and spatial deformation [Snyder, 1992]. In the animation

language AL, S. May uses a Scheme interpreter to dynamically generate and animate

complex objects, such as generative architectures and anatomical muscle models. AL

uses functional operations that arbitrarily transform, deform, or generate new geom-

etry. The commerical software Maya includes MEL, a interpreted scripting language

that can be used to generate geometry in relation to efficient, underling C/C++ object

models [Gould, 2002]. Although interpreted languages offer a great deal of flexibility,

user interaction with such systems is difficult to define, and low-level interaction with

graphics APIs makes it difficult to efficiently group geometry for hardware acceleration.
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Visual dataflow langauges, VDFLs, provide another solution to procedural modeling.

An early VDFL for procedural modeling is ConMan, a system by Paul Haeberli that uses

a directed acyclic graphs (DAG) of behavioral nodes to generate objects. These nodes

are similar to the language Squeak, whose inventor Luca Cardelli describes a “frag-

ments of behavior”, which perform actions on various data [Cardelli, 1985]. Xfrog is a

natural modeling system in which p-graphs, a layout of labeled verticies, are converted

into an i-tree by replacing verticies with primitives that are then rendering interactively

[Deussen and Lintermann, 2004]. The commerical software Houdini uses VDFLs to de-

scribe and animate graphs consisting of surface operators (SOPs), particle operators

(POPs), dynamic operators (DOPs), and render operators (ROPs), among others. In

addition to developing an integrated VDFL framework for procedural modeling (dis-

cussed later), Ganster provides an overview of the features and drawbacks of several

other procedural languages [Ganster and Klein, 2007]. VDFLs provide a more natural

interface and also a great deal of flexibility as nodes may perform any operation, but it is

not entirely clear how these function graphs should be connected to performance-based

scene graphs.

While procedural languages have generally increased in expressiveness over time,

scene graphs represent geometric models differently, and have evolved to meet other

needs. The pre-cursor to the scene graph is a hierarchical description of object transfor-

mations, introduced in early systems such as GKS and PHIGS+ in the 1980s [van Dam, 1998].

In 1993, Strauss and Rohlf introduced IRIS Inventor and IRIS Performer, systems
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which defined a scene graph as a DAG with nodes that include “shapes, properties,

and groups” [Strauss, 1993] [Rohlf and Helman, 1994]. These classifications are intro-

duced to enable efficient state management of graphics hardware, such as sorting by

material properties, or spatial culling by groups. Building on this, OpenSceneGraph

and OpenSG sought to bring these enhancements to consumers by expanding to differ-

ent platforms (from SGI IRIX to Linux) and new rendering APIs (such as Microsoft’s

Fahrenheit) [Harrison, 2007]. Over time, the term scene graph has come to signify a

wide range of approaches to storing geometric objects. In a panel discussion at SIG-

GRAPH 1999, graphics professionals were found to have differing views on the definition

of scene graphs [Bethel, 1999]. A central issue to organizing geometric objects is that

they have competing needs in terms of spatial organization (for culling), material prop-

erties (for state switching), functional behavior (animation), and generative abilities

(procedural modeling). Avi Bar-Zeev collects and discuss several of these competing

goals [Bar-Zeev, 2007].

The problem addressed here is how to integrate the performance benefits of scene

graph organizations with the flexibility of procedural modeling languages, to develop a

system for real time procedural animation. We build on visual dataflow languages to

develop LUNA, an intuitive, high performance, real time system for procedural model-

ing. Our system is used to interactively model complex organic objects with a deferred

shading engine for high quality rendering. We also introduce a procedural reference
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model, and use it to do performance comparison with Houdini (the only other generic,

modern procedural dataflow language for procedural modeling we are aware of).

4.2 Language Design

4.2.1 Overview

Our approach is an integrated one that combines the modeling advantages of pro-

cedural dataflow languages with the performance advantages of scene graph memory

organization and GPU kernel execution. The LUNA system consists of two directed

acyclic graphs that include a procedural graph, representing behavioral nodes, and a

scene graph, representing geometry and scene state. Our general design principles over

these two graphs are:

1) Procedural graphs generate multiple scene sub-graphs. A procedural node repre-

sents the behavior of a high-level concept, and is capable of taking multiple scene nodes

as input, and generating multiple scene nodes as output. For example, in a classical

design patter, a Mesh class would maintain geometry and allow loading from a file. In

our system, mesh object may be a scene node storing geometry, but a MeshFile is a

procedural node which can generates any number of mesh scene nodes. This distinction

allows us to define many procedural behaviors for each geometry class.

2) Scene graphs use API-dependent proxy objects to manage rendering. At present a

scene node specifies a pivot, material, and geometry buffers. A procedural node groups

its output scene graph into a set of objects of similar type, which are rendered using
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an API-dependent proxy object. The proxy object can take advantage of the pivot

to perform spatial culling, the material to group for graphics texture state, and the

geometry to group by object type, similar to the performance enhancements found in

IRIS Performer.

3) Execution takes advantage of scene graph organization, hardware rendering, and

GPU kernel execution. Our system takes advantage of the GPU in three ways: 1) The

behavior of procedural nodes can be optionally executed on the GPU using GPU-specific

node kernels, 2) Scene graph organization is optimized through grouping of geometry

types mentioned earlier, 3) Rendering is optimized for quality and performance using a

graphics hardware-based deferred shading engine.

An explicit distinction between behavior and structure can be found in several newer

visual dataflow languages. In the integrated system by Ganster and Klein, a model graph

represents functional operations that generate structure [Ganster and Klein, 2007]. Al-

though the system is flexible, complex models such as trees are generated through

iteration which occurs at the model level, reducing the performance of the system con-

siderably. In LUNA, procedural nodes represent high level operations, and iteration

inside their kernels produces multiple outputs. Forbes develops a system in the area of

information visualization that models behaviors and structures as distinct graphs that

can operate on one another [Forbes et al., 2010]. This system creates complex transi-

tions for visual data but does not deal with generative geometric structures.
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(a)

(b)

Figure 4.1: Structure of the LUNA graphs in which, a) a procedural graph operates on
subsets of a scene graph, and a specific example b) in which four procedural nodes are
used to generate multiple scene nodes to render the image shown in Figure 4.2. In the
actual storage of the graph, all nodes are maintain by a single graph system, and their
usage and behavior is distinguished by object semantics.

4.2.2 Formal Definition

Formally, LUNA is defined by two directed acyclic graphs, a procedural graph (P)

that modifies input and output subsets of a scene graph (S ). Each graph is a set of

nodes and edges, while the P verticies additionally reference subsets of S:
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P = {Pv, Pe} (4.1)

S = {Sv, Se} (4.2)

Each of the nodes and edges of these graphs have a particular interpretation. A proce-

dural node, Pv ∈ P , defines behavior that consists of a CPU kernel, an optional GPU

kernel, which operate on an input subset of the scene graph, Sin ⊆ S, to produce an

output subset, Sout ⊆ S. Procedural nodes also include a proxy object, Px, which is

referenced by the node but managed by renderer, and maintains the vertex buffers and

graphics state for the object’s output sub-graph. A procedural edge (Pe) connects two

P-nodes and defines the functional inputs to a behavior (such as an image and a mesh

being the input to a displacement).

Pv = {Sin, Sout, Px, kernel(CPU/GPU)} (4.3)

Pe = {Pa, Pb} (4.4)

A scene node, Se ∈ S, defines a media object, which may be an image, shape,

mesh, sound, or other structure. For geometric objects, a scene node maintains a pivot

which defines local and world transformations, references to material nodes that define

shaders and textures, and geometry buffers which maintain verticies, edges and faces.

Scene edges, Sv, define relationships between two geometric objects, the most common
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example of which is an instance relation (MeshInst refers to a Mesh), described more

later.

Sv = {pivot, material, data buffers} (4.5)

Se = {Sa, Sb} (4.6)

A graph demonstrating this structure is shown in Figure 4.1. Visually, our user

interface shows the procedural graph while the scene graph remains hidden. As the

system is procedural this is ideal since the output scene geometry can grow rapidly.

Users create edges by click-dragging from an input node to an output node, as shown in

Figure 4.2. In the graph structure, the Scatter P-node is connected to the renderer, and

in our graphical interface this is indicated by the ‘eye’ icon. As such, any object in the

procedural graph may be visualized by clicking on this icon, allowing multiple objects

to be connected to the renderer. A special Time node is automatically introduced by

the system to trigger time-dependent changes per frame.

4.2.3 Evaluation Model

The evaluation model consists of two basic steps. First, the procedural graph is

traversed from the Time node outward to any downstream nodes that require updating

(left-to-right), as shown in Figure 4.3a. In this example, it requests that all nodes

except the primitive (sphere) be re-evaluated. The second step is to traverse the graph
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(a)

(b)

Figure 4.2: The graphical interface in figure b) produces the visual results shown in a),
by building the internal graph structure from Figure 4.1.
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Figure 4.3: Sequence of steps in the evaluation model: a) The Time node requests
updates by traversing graph dependencies, b) The Noise node is traversed in depth-first
order to update a noise-animated mesh using a GPU kernel, and the result is stored on
the GPU via a MeshProxy, c) The Fluid node is visited to update fluid particle locations
using a GPU kernel, d) The Scatter node generates or updates the world transform of
mesh instances, using the GPU mesh from step b as an instance that is scattered at the
point locations of step c.
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in depth-first order from any visible P-node connected to the renderer, to evaluate that

node and update its geometry. Repeated evaluation is avoided by tagging the nodes that

have already been evaluated on the current frame. For each visited node, its CPU or

GPU kernel is called, which will generate the output sub-graph Sout. The proxy object

Px for that P-node is then called to update vertex buffers and to render the resulting

sub-objects.

The example of Figure 4.1 uses a smoothed particle hydrodynamic simulation (SPH),

a sphere primitive, and a noise generator, to generate a number of organic noise-

animated spheres suspended in a fluid. The Primitive node creates a mesh scene output

which is generated only once. Figures 4.3b through 4.3d show the results of the traver-

sal process on each node in the example. The Noise node generates an animated noisy

sphere which is updated on every frame, while the Fluid node generates a PointSet

output which updates the fluid particle locations per frame.

The output scene graphs of Noise and Fluid, consisting of a mesh and a point set,

are used as inputs to the Scatter node, which generates a list of MeshInst objects at each

of the point locations. A MeshInst is a sub-class of a Mesh scene node which supports

much of its functionality through a reference to another Mesh node. In this case, many

MeshInst nodes with different transforms refer to a single input mesh, providing a

way to represent geometry instancing. To avoid repeatedly generating the MeshInst

output scene graph, the Scatter P-node detects changes in the number of elements of its
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inputs, and only rebuilds when necessary. This allows nodes to generate more geometry

as needed, or efficiently animate the geometry present.

4.3 Implementation

4.3.1 Discrete Geometry

Figure 4.4: Objects are represented as discrete geometry in LUNA with uniform buffers.
Buffers may vary in length, as in the example of CV Verts for the Curve object shown.
Other buffers might store pointers to allow lists of the same object class (C0,C1,..,Cn).
Data is sent to the GPU in a unified way using proxy objects. Some buffers are allocated
by derived nodes, such as particle velocity. Other functional objects may operate across
many object types. A bend transform, for example, works with any object that has a
vertex buffer.

Scene nodes store and transmit geometry through the graph. Their represetation

consists of discrete geometry stored in the data buffers of each node. These buffers

have a direct mapping to GPU buffer objects and can be directly copied from CPU

memory to the GPU. While a common method of storing objects uses a C-struct to

describe individual elements, this makes it difficult to expand object attributes at run

time, whereas performance and flexibility are improved by storing structures in buffers
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of uniform types. Figure 4.4 shows the base classes for discrete sets and their similarities

in buffer structure.

In creating geometric types for LUNA, the concept of uniform buffers is abstracted

to an arbitrary number of named buffers, each with variable length, and fixed sized

elements with in a given buffer that implement a particular discrete geometry. Their

layout is designed to match graphics hardware buffer objects, yet store every per-element

variable needed for high-level objects including hierarchical relationships. Trees for

example, are stored in JointSet scene objects, which contain buffers that hold references

to parent and child branches.

A key benefit of using uniform buffers is that broad classes of objects can be treated

similarly both during evaluation and rendering, without the need to define new func-

tions. Points, curves, joints and meshes are all defined with their three-dimensional

vertices as the initial buffer. Thus, modifiers such as twist, bend and distort can be per-

formed in a consist way across many different geometry types, including points, curves,

and surfaces. The renderer requires vertex-face information and normals, which are

available as additional mesh buffers.

4.3.2 Performance

The structure of LUNA supports procedural modeling by allowing multiple outputs

for each behavioral operator, while its evaluation model supports several performance

enhancements. First, only the portions of the graph that change over time are re-
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evaluated per frame. Second, the proxy objects efficiently transfer only the sub-graph

geometry that has changed from CPU to GPU, and also group that geometry to share

render state transitions (e.g. materials). While the scene graph S formally represents

the total visual output of the system, because of its generative nature it is useful to

conceive of the system as a set of procedural nodes in which scene sub-graphs flow

through the system. A procedural node can essentially create, modify, destroy, or

transform an input scene graph to generate an output scene graph. All of these changes

are found in the complete graph, as the scene graph S holds inputs and outputs of

all procedural nodes. This introduces a potential problem common to VDFLs: the

replication of data buffers at later points in the graph. In the current system, modifiers

copy input objects to outputs, and then perform transformations on the output buffers.

This resolves situations where a single input is modifier in two different ways, but is

memory inefficient when there is only one output. In the future, the evaluation model

could be modified to remove this inefficience.

The LUNA design takes advantage of the ability of modern graphics hardware to

invoke re-entrant kernels. Giden et al. develop such a system consisting of graphs

of CUDA kernels for the eXtensible Imaging Platform (XIP) of the National Cancer

Institute [Giden et al., 2008]. In LUNA, each procedural nodes may have an optional

CUDA GPU kernel that performs simulation, or geometry generation, on the GPU.

Notice there can be multiple GPU kernels in a graph in Figure 4.3b, and these can be

interspersed with rendering calls to allow several high level nodes to be evaluated on
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the GPU while also using the GPU for rendering. At present, only the GPU kernel for

the SPH fluid simulator is written, and has not yet been tested in the context of other

GPU nodes although the design allows for it.

Data replication between CPU and GPU versions of an object are avoided through

the proxy objects. At present, the CPU maintains the final copies of all data. For objects

with single outputs, the proxy object transfers that data to the GPU and renders it,

updating only changed buffers. In the future, for nodes evaluated with GPUs kernels,

it should be possible to directly update the proxy object, as in Figure 4.3c, without

returning the data to the GPU. By authoring multiple nodes for the GPU, this should

allow complete graphs to be evaluated entirely on the GPU. We view the bus transfer

from CPU-to-GPU as a flexible step based on which portion of the graph requires the

data next.

Although CPU-GPU bus transfers incur a cost for dynamic geometry they also intro-

duce a benefit in procedural modeling. In RenderAnts, Zhou et al. develop an adaptive

parallel pipeline for geometry transfer to the GPU in a Reyes rendering environment.

Dynamic loading of the GPU allows for more complex models since scene detail is not

bound by GPU memory. This can be an advantage in procedural modeling as well, and

LUNA proxy objects support this by reusing the same vertex buffer objects for different

mesh geometies in the same render frame. Although not adaptive in the same sense as

RenderAnts, each P-node generates an output sub-graph of varying size based on user

requested detail levels, and the proxy can quicky load different meshes in a single set of
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VBOs allowing for much greater scene complexity. This is demonstrated in particular

by the Loft examples in the next section.

4.3.3 Rendering

The integration of procedural modeling with high quality real-time rendering is a

novel research area. Although deferred shading is typically found only in game engines

with objects of particular class types (terrain, etc), the LUNA rendering engine supports

deferred shading and multi-pass rendering of procedural models over OpenGL. Individ-

ual objects in LUNA may have Cg shaders assigned to them which permit advanced

visual effects on generated models. Cg shaders are included in procedural graphs as ma-

terial inputs to nodes. At run time, the proxy object for a particular node runs any Cg

shaders prior to primitive drawing. Screen space shaders allow for effects such as depth-

of-field, deferred soft shadows, motion blur and light bloom. Increased performance due

to geometry classes, lack of temporary objects, and streamlined buffer transfers allows

procedural models to be generated and shaded in a real time, high quality rendering

environment.

4.4 Procedural Results

4.4.1 Twist : Modifiers and Order of Operation

Modifiers are procedural nodes that operate on any input geometry type. This is

accomplished by copying the input sub-graph, which may be points, lines, curves, or
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(a) (b) (c)

Figure 4.5: Modifiers operate on different geometry types. In these examples, a cube
Primitive (bottom left) is instanced at PointGrid locations (top left) by a Scatter node
(right). Placing a twist at different stages in the graph produces a) A twisted grid with
untwisted cubes, b) Twisted cubes located at an untwisted grid, and c) A regular grid
with regular cubes, the whole of which is twisted.

surface geometries, to the output sub-graph, and then uniformly modifying the point

locations according to some global transform. The order of these operations is also

important, the examples in Figure 4.5 show, where a cube is instanced at grid locations.

Depending on what stage the Twist operation is performed produces different variations

of twisted/untwisted objects. In this example, the grid locations, the cube mesh, or the

entire object are twisted separately. Although a point cloud (PointSet) can be twisted by

its verticies, to correctly twist a mesh requires transforming both verticies and normals.

This is done by allowing the Twist node to inspect the type of its output and perform

an additional transformation on the normal buffer.
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Figure 4.6: Twist, R. Hoetzlein (2010). A tree is constructed from a JointSet hierarchy
which is then built up using cylinders Primitives. The overall shape is then twisted
to procedue these results, rendered in real time using deferred shading, shadows, and
depth of field.

A more complex twisting example is shown in Figure 4.6. Here, a tree is constructed

from a JointSet hierarchy, which is made into a solid object by scattering Cylinder

primitives at the joint locations. Unlike an interpreted function, which might recursively

traverse the tree, determine joint angles, and instance a cylinder as it goes, in LUNA the

structure of the entire tree is generated first. After which, any object may be instanced

at this tree structure separately from the tree definition. A twist is added to the final
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result, distorting the cylinder shapes in addition to the tree structure, producing the

image shown.

4.4.2 Scatter : Compound instancing

One of the key features of procedural modeling systems identified by Reeves is repli-

cation, the ability to generate instances of a model with subtle variation [Reeves et al., 1990].

The LUNA language can distinguish between instancing, which is the copying of a single

mesh at multiple locations and orientations, and replication, the ability to repeatedly

re-evaluate a procedural model so that each instance is different from the last. Cur-

rently, the node for LUNA to support replication is not yet written, as this requires

repeated evaluation of procedural sub-graphs. However, LUNA does support nested or

compound instancing, the ability to create instances of models that themselves contain

instances.

Examples of compound instances are shown in Figure 4.7 and 4.8 using a Scatter

node. In the first example, 4.7a, a Loft object is used to generate N swept surfaces as

output scene sub-objects according to Subset Curves defined over a set of points. These

sub-objects are then Scattered to produce N*M swept curves, whose parameters in this

case give the appearance of three dimensional brush strokes. In the second example,

4.7b, a cube primitive is Scattered at regular locations on a point grid. The result

is then Scattered again at moving particle locations to create N*M output cubes with

more variation. As scattering multiplies its input by N point positions, nested scattering
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(a) (b)

Figure 4.7: Compound systems creating using a variety of objects, a) Swept surfaces
are generated from a particle system, which is then scattered to create the appearance
of three dimensional brushstrokes composed of tubes, b) A collection of cube primitive
is scattered using a grid, then scattered again to produce variation. In both systems,
space is distorted by using a spherify operation on the output.
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(a)

(b)

Figure 4.8: Graphs for the visual results of Figures 4.7a and 4.7b, showing a) a collection
of loft surfaces which are scattered, and b) a collection of scattered cubes which are
scattered again. In both cases the compound result is spherified to distort the final
space.
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can result in an exponential generation of mesh geometry growing as O(NM ), assuming

N particles per scatter, and M scatter operations. To prevent system stalling, a user

controllable maximum count is present on each Scattering node, forcing a limit on the

maximum output at each to step. In the future, it should be possible to allow the

renderer itself to dynamically adjust these limits to meet performance or quality goals

for real time or offline rendering.

4.4.3 Displace, Wave, Cube: Other experiments

A number of other experiments are shown in Figure 4.9. These experiments include

a) a spherified car mesh, b) a cube primitive with wave displacement rendering with toon

shading, c) architectural forms created using a combination of swept and fun surfaces,

with texturing, d) shells created by animated wave displacement of a sphere, rendered

with environment mapping, and e) a planet-like form for rendered using curve subsets

on a set of points surrounding a sphere.

All objects in these examples are rendered at interactive rates in real time with soft

shadows, depth of field, and texturing. Notice in example e), planets, the rendering

system allows for combinations of curve and mesh primitives, showing different portions

of the procedural graph simultaneously. Example b) and d) show the use of other

media types in conjunction with surfaces, where an animated image is used to displace

the surface points of a mesh along its normals. This is an ideal node for implementation
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(a)

(b)

(c)

(d)

(e)

Figure 4.9
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as a GPU kernel which, in the future, could perform mesh refinement and displacement

in one step.

4.5 Performance Results

Figure 4.10: Procedural reference model introduced for performance comparisons with
Houdini and a baseline OpenGL model. The object is specified as a set of curves defined
from random subsets of points, normalizing the curves to a sphere, and lofting them to
create tubes. See Appendix A for a detailed definition. The LUNA graph used to make
this object is also shown.

Standard reference models for procedural modeling do not yet exist. Baseline models

for static geometry have been around since the Utah teapot [Torrence, 2006], the Stan-

ford Bunny [Turk and Levoy, 1994], and the happy Buddha [Curless and Levoy, 1996].

Similar test objects are available for volumetric data 1. We thus propose a test case for

procedural modeling: a woven sphere composed of swept surfaces residing on a sphere,

1Several volumetric data sets are available from http://www.volvis.org/ with references to original
authors of the data
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Figure 4.10. A detailed description of the woven sphere is presented in Appendix A and

also available online.

The woven sphere is a suitable reference for procedural modeling for several reasons.

First, it is relatively simple, and although it contains physical animation it cannot be

created from a physics simulation alone. Second, later construction steps are dependent

on earlier time-dependent motions. Third, it requires evaluation of random point subsets

to create curves, which is a combinatorial process that is efficient when done correctly.

Fourth, it generates multiple loft surfaces which cannot be created through instancing or

static geometry deformation, so it is unique to procedural systems. Finally, the meshes

generated require vertex re-evaluation per frame which forces a CPU-to-GPU transfer,

or direct evaluation on the GPU. Thus, as hardware support for procedural generation of

dynamic geometry improves this object can be used to investigate bus transfer overhead

during rendering. In addition to these specific features, the object is relatively simple

from a procedural standpoint and its storage complexity can be computed theoretically.

To advance the woven sphere as a test case in the graphics community, we implement

a baseline model directly in C++ using GLUT without a procedural modeling language,

and make this freely available. This provides an absolute reference for the best possible

performance since it eliminates any overhead due to language evaluation. We also

generate the woven sphere in both Houdini and in LUNA for comparison.

We recommend specific parameters for low, medium and high resolution reference

models in Appendix A. For Houdini, we measure evaluation time and viewport drawing

27



Chapter 4. Procedural Modeling of Complex Objects using the GPU

cost using Houdini’s “performance monitor”. To guarantee the level of detail settings

match our baseline, the number of sample vertices per curve are individually counted.

We also check that the total number of vertices and faces are very close to the theoretical

number for a given test (Houdini does not allow one to set resampled curve resolution

exactly). For LUNA, we construct a graph for the woven sphere and set the sampling

parameters to match the baseline.

Performance results for the woven sphere for the baseline, Houdini and LUNA mod-

els are shown in Figure 4.11. The LUNA reference model is implemented using five

nodes: Particles, Subset Curves, Spherify, Curve (shape) and Loft, and can be con-

structed in the interface in under a minute with ten clicks and four click-drag motions.

On average, LUNA is consistently 4x to 7x faster than Houdini and only 2x slower than

the baseline model (a direct C implementation with no overhead). All LUNA models

run in real time with the low res model at 150 fps (7 ms total) and the high res model

at 8 fps (126 ms total)

The baseline model is implemented directly in C using GLUT for rendering. Our

first, naive implementation in Houdini uses the Copy Stamping SOP to evaluate an

expression to generate point subsets for curves. Repeated interpretation of string ex-

pressions is likely the cause of reduced performance here. Following discussions in online

Houdini forums, a better method uses the AttribCreate OP to tag particles into groups

and then the Add SOP to generate curves from the groups by attribute name. This

Houdini graph requires ten nodes. Although performance is improved in most cases,
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(a)

Model Verts
Baseline (ms) Houdini1 Houdini2 Luna (ms)
eval draw eval draw eval draw eval draw

Low res 5k 2 <1 40 4 27 4 5 1
. 22k 10 <1 140 13 69 18 22 3
Med res 50k 24 1 203 39 183 47 45 4
. 89k 44 2 318 71 276 71 89 7
High res 179k 88 5 536 130 555 146 118 9

1 Naive method. Created using Copy Stamping SOP and expressions.
2 Suggested method. Created using AttribCreate SOP and Add SOP.

(b)

Figure 4.11: Performance comparison for graph evaluation and rendering time (in mil-
liseconds) for the reference model in LUNA, Houdini 10, and OpenGL baseline.
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this technique is slower than Copy Stamping for the high-res model and averages 10x

slower than the baseline model overall.

Interestingly, although this object represents the worst case for bus transfer overhead

due to dynamically generated geometry per frame, in the baseline test it represents only

4 to 6% of the total cost (5 ms out of 93 ms for the high-res model). In a game engine,

however, a 5 ms cost for a 180k vertex object is unacceptable, and in such a context

this object would be solved using fixed vertex shaders on the GPU while sacrificing

flexibility. LUNA render times closely match the baseline. In Houdini, the viewport

drawing cost averaged between 10 to 15% of the total cost, and we are unsure of the

reasons for this additional overhead.

4.6 Conclusions

We demonstrate a visual dataflow language for procedural modeling, LUNA, that is

efficient and flexible. This system integrates a procedural modeling graph which oper-

ates over input and output subsets of a scene graph. The scene graph is implemented

using discrete geometry, selective updates, and material grouping, to allow for inter-

active rendering using a deferred shading engine. The interface allows novice users to

quickly prototype objects without the need to understand detailed controls, and the

performance of the system enables direct feedback on the structure, appearance, and

surfacing of complex models. A demo version of LUNA is currently available online at
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Figure 4.12: Glass, R. Hoetzlein (2010). Surfaces generated by twisting tubes, rendered
with glass-like material properties.

http://www.rchoetzlein.com/luna/. Our system is tested and compared to others using

a new reference model for procedural system.

There are several limitations still present in LUNA we hope to address in the future.

First, although individual objects may contain heirarchies (e.g. JointSet, Tree), the

scene graph is incomplete in the sense that output subsets are still primarily lists of

scene nodes rather than transformation hierarchies. Cross-referencing using scene edges

to connect scene nodes is present only during mesh instancing and material referencing,

while hierarchical models such as trees are handled by propagating local transforms of

joints to the world transformations of output objects. A more complete model would
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implement a complete scene graph model for each procedural node, allowing for multiple

P-node output types and more complex object relationships. For example, in the future

character models should be possible using named scene nodes with joint relationship

handled internally.

Several performance improvements are still possible. At present, LUNA takes ad-

vantage of scene graph performance primarily by grouping material and texture render

state, and by intelligent updating of hardware geometry buffers. Although the informa-

tion is present in LUNA, we have not yet implemented spatial culling or acceleration

structures which would improve the system considerable for larger scenes. Dynamic

overlapping geometry, such the woven sphere reference model, still present a difficult

performance challenge which can only be addressed through better polygon-level render-

ing. However, it should be possible to accelerate disjoint objects using known techniques

since some objects are naturally separated both spatially and conceptually as high level

entities by the P-graph.

A benefit of the language model presented is that it allows for different interpreta-

tions. LUNA is simply defined as a procedural graph that makes generative changes

to subsets of a scene graph, adding or modifying scene nodes as needed. While LUNA

does not yet contain a detailed vocabulary for physical simulation, crowds, or character

modeling, we believe that due to the structure of the langauge these objects should be

relatively easy for communities to added in the future. To our knowledge, LUNA is the
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first system to allow for high quality, deferred shading of complex procedural models

with interactive feedback.
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Appendix A

Reference Model

Model P C K V U Verts Tris

Low res 50 25 8 28 8 5,600 9,450
Med res 150 100 8 42 12 50,400 90,200
High res 250 200 8 56 16 179,200 330,000

Figure A.1: Woven sphere reference model with parameter values for low, medium and
high resolution models.

The woven sphere is a procedural model defined as follows. Input consists of a

particle system with P points, generated randomly in a box from (-1,-1,-1) to (1,1,1)

and moving with a uniform velocity of 0.0025 in a random direction (arbitrary units,

time step is 1.0). As the points animate, they reflect off boundaries to remain inside

the initial volume. Described in LUNA notation:
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PSYSpoints ( P, init min < −1,−1,−1 >, init max < 1, 1, 1 >, init vel < 0.0025 >

)

From these points, random subsets are selected in groups of K to become the CV

control keys of C Bézier spline curves. The Bézier curves are sampled to a resolution of

V total sample vertices per curve. The curve order is 3 (cubic). The function is:

SUBSETcurves ( POINTSpoints, num keys K, num curves C, num samples V )

This generates C curves with K keys and V sampled points in each. These curves

are then spherified to a unit sphere (radius 1) by normalizing the points in each curve.

Note that it is incorrect to normalize the CV keys as the resulting curve may still

penetrate the sphere. The spherify function should operate on the final sampled points

to guarantee the sampled curve lies on the sphere. In procedural modeling terms, the

spherify function takes any geometric object (points, curves, meshes) and normalizes its

verticies. It is a typeless function defined by p’ =|p|:

SPHERIFY ( OBJ )

Finally, loft surfaces are generated by sweeping a circle along the curves. A circle of

radius 0.025, sampled with U verticies, is used as the cross-section. The paths are the

spherified curves of the previous step. The loft surface has a cylindrical topology with

only triangular faces, and no end caps. This produces a total of U*V verticies per loft,

and C*U*V verticies for the entire woven sphere object, with 2(U-1)(V-1) triangles per

loft, and 2(U-1)(V-1)C triangles for the whole object.
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CIRCLEcurve ( samples U )

LOFTmesh ( PATHcurves, SHAPEcurve )

The total function is:

LOFTmesh ( SPHERIFY( SUBSETcurves ( PSYSpoints(P, init vol, init vel), K, C,

V )), CIRCLEcurve ( U ) )

Parameter values and sample representations for the low, medium and high-res

models used in our tests can be found in Figure A.1. For render performance testing in

real-time systems, it should be rendered at 1024x768 using a single Phong light source

and no shadows or anti-aliasing. When reporting results, ideally evaluation should be

separated from render time. Animation of the underlying particle system causes the

curves to gradually morph along the sphere surface.
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Appendix B

Houdini Interaction Study

Results of the interface test in Houdini for the reference model are shown here. No

prior knowledge of Houdini is assumed, although the author is familiar with procedural

modeling concepts. In total, it took around 4 hours to create this model in Houdini.

Elps Time Task Time Description

0:02 2 min Figure out how to create objects (must press enter)

0:08 6 min Cannot use Source on Particles (only Fluids)

0:13 5 min Source for Geometry used to emit particles. Needed
to explore help docs to find that Emission type pa-
rameter can be set to Volume.

0:44 31 min Trying to figure out how to build a curve from par-
ticles. No obvious function to generate curve from
points. Found an online forum: ”moving curves
points to the particle locations using a Point SOP”

0:59 15 min Time spent figuring out how to connect object sub-
graphs to one another. Incorrect assumption about
how Houdini works.

1:36 37 min Output: Now produces points moving on surface of
a sphere. Created a point SOP to shrink points to
a sphere. Learned that top-level graphs are not flow
networks, but heirarchy networks. So it is not possible
to connect object sub-graphs. Must copy nodes into
an object’s flow graph.
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1:51 15 min Moved the ’spherify’ node after the curve input, to
properly match reference model. Attempting to use
the Copy Stamping method to generate many curve
instances, after further reading of documentation.

2:06 15 min Discovery that graphs in Houdini compute entire ob-
jects first. I should not generate multiple curves, but
generate a complete curve-loft, then replicate.

2:18 12 min Skin Output of the Sweep SOP is not working. Not
sure why.

2:36 18 min Found that Circle primitive type must be changed
from Primitive to Polygon in order to generate swept
surfaces.

2:56 20 min Curve points are not spherified, only control keys.
To spherify curve itself, necessary to add a Convert
operator to make a Polyline.

3:01 5 min Output: Now produces curves moving on surface of
sphere. Determining relation between Level of Detail
and number of points generated, as I cannot precisely
control the curve sampling.

3:24 23 min Found that instancing was incorrect because ’stamp’
was not being used correctly. Took time to fig-
ure out it must be an expression of the form:
point(”particles”, $PT +

3:34 10 min Some time lost due to object path nam-
ing. Interface automatically inserts paths like
”obj/group/particles/”

3:51 17 min Output: Complete graph is working, with curves be-
coming loft tubes. Copy stamping is slow (expression
parsing?), probably a better way to do this. Cannot
stop it from translating curves to the particle loca-
tions.

3:54 3 min Hack was used to solve Copy Stamping translation
problem. Particles scaled to (0,0,0). This 0 point
particle set used as input to the Copy to Points node.

3:54 Output: Produces results that match the reference
model.
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