
Chapter 3

LUNA: A Puzzle-Based Metaphor for
Procedural Modeling

3.1 Introduction

Creative tools for digital artists have evolved considerably over the years. Since

early systems such as Sutherland’s Sketchpad [Sutherland, 1988] presented the first

opportunity to directly interact with computers, users have been able to paint tex-

tures directly on surfaces [Blinn and Newell, 1976] [DeBry et al., 2002], and to inter-

actively sculpt three-dimensional objects themselves [Lawrence, 2004]. These kinds of

direct interactions, similar to physical artistic practices, are shifting more recently to-

ward interaction in augment reality [Bandyopadhyay et al., 2001] [Ryokai et al., 2004]

[Jacucci et al., 2005]. Yet tools for conceptual artists, who may view the art object as

a dynamic system or model, have evolved more slowly.

While digital interfaces for the plastic arts are now common, such as painting with

Photoshop or sculpting with Zbrush, visual interfaces for conceptual artists in the form

of visual data flow languages are still relatively new and still evolving. Early prototypes
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such as ConMan [Haeberli, 1988] introduced the notion of dataflow interaction for graph-

ical objects, while IBM’s Visualization Data Explorer [IBM, 1999] provided a wide range

of tools for processing scientific data. Educational systems such as Alice and Scratch

employ a visual data flow metaphor, but these are designed largely to teach program-

ming concepts rather than to simplify artistic development [Conway and Pausch, 1997]

[Resnick et al., 2009]. Commercial systems such as Houdini enable content creation for

artists in the entertainment industry [Bannink, 2009], using procedural methods in an

offline setting to develop physical simulations and special effects. However, there is rel-

atively little current academic research on novel designs for visual data flow languages

in comparison to augmented interfaces for physical manipulation.

For media artists working with live performance, visual data flow languages such

as Max/MSP/Jitter, ’vvvv’, and Soundium offer an interactive node-based interface.

These systems have been employed in major international live exhibition artworks.

Max/MSP/Jitter was founded on digital signal processing, with objects that can pro-

cess audio signals in real-time, and can transform these signals into graphic primitives

[Jones and Nevile, 2005]. Soundium is a visual language that allows for interactive com-

position of visual elements, such as shapes, images and video, during a live performance

[?] while ’vvvv’ provides for graphical interaction with support for multiple display

rendering and geometric primitives such as mesh objects [Meso, 1998]. While each of

these systems have different affordances, none of them employs a procedural modeling

paradigm to allow for complex geometries. Although systems for media artists have
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evolved to support live performance they have remained relatively low-level in compar-

ison to the model complexity offered by offline procedural tools.

Studies examining how conceptual artists interact, or would like to interact, with

procedural data flow interfaces are not as common as studies of painting or drawing

interfaces. In a cognitive study of visual dataflow programming, Green defines and

explores several aspects of visual interfaces: 1) commitment, when the language re-

quires early decisions, 2) progressive evaluation, the ability to see intermediate results,

3) expressiveness, how easy it is to say what you want, 4) viscosity, how much the

interface resists change, and 5) visibility, how easily you can see what you’re creating

[Green and Petre, 1996]. While Green admits it may be difficult to establish quantita-

tive measures of these, his criteria establish guidelines for evaluating visual languages.

To understand interface issues that are directly relevant to media artists, several di-

mensions of creativity of interest to this group were examined prior and during software

development. These dimensions, 1) programming, 2) modality, 3) live performance, 4)

dynamics and behavior, 5) structure and surface, and 6) image and idea, were found to

represent common themes that media artists working with visual forms seek to explore

(see Chapters 5 and 6 for a detailed discussion of these dimensions). Programming refers

to the desire of some artist to engage in programming, while others seek to explore ideas

visually, without programmatic knowledge. Modality is the ability to engage with differ-

ent types of media, such as images, surface, video, and audio. Live performance refers to

the desire of some artists to have immediate, real time feedback, with high quality out-
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put in full screen for installation and performance. Dynamics refers to certain artist’s

interest in exploring motion and behaviour, while Structure and Surface refers to artists

interested in expressing geometric forms and their material appearance. Finally, Image

and Idea refers to media artists desire to work with the image as a conceptual object

with semantic content.

These dimensions establish the basis on which interface decisions were made to

create LUNA, a novel visual data flow language for procedural modeling. LUNA is

inspired by the board game Scrabble, where the ability to express a wide range of

words comes from a combinatorial rearrangement of only a few tiles. The dimensions

of creative exploration for media artists are used to inform the design decisions of the

language, resulting in a minimalist approach which supports real time interaction for

complex procedural models. Result consists of a number of cross-disciplinary projects,

and comparisons of user interactions performed in Luna and Houdini.

3.2 Interface Design

Design of the visual data flow language for LUNA is motivated by the board game

Scrabble, specifically the power of expression resulting from a combinatorial arrange-

ment of minimally designed tiles. While similar systems use graphs to allow for such

combinations, they are often superimposed with a number of other interface elements

and widgets which must be read by the user in order to be understood. This need to

“read” the interface, we would suggest, reduces the rate at which different conceptual
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designs may be explored by the artist. LUNA is developed using a minimalist ap-

proach, in which the combinatorial aspects of expression provide a top level interaction

which is then continually refined through more specific interactions. Design decisions

are motivated toward eliminating the act of reading in favour of visual metaphor.

3.2.1 Design Decisions

Support for creative exploration influenced the primary design decisions in the de-

velopment of LUNA. Among these was the desire to develop a tool that builds on the

dimensions of creativity established earlier by informing the goals of the language. The

dimensions explored, and their impacts on language interface design, are as follows:

1. Programming - Mathematical knowledge should be optional to the artist. The

primary mode of interaction should be conceptual and exploratory, suggesting a visual

data flow language with a minimalist design aesthetic.

2. Modality - The language itself should offer a range of different media types.

These are supported through a tool set that includes points, curves, surfaces, images,

and materials. The interface should make the media types, which are the primary

objects being operated on, apparent to the user while working.

3. Live Performance - The interface should enable live performance by allowing for

full screen, high quality output, with real time design changes. This aspect informs the

overall visual design of LUNA, resulting in an inverted window layout that floats the
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menus and interface elements above a full screen output canvas, rather than surrounding

the canvas by interaction tools.

4. Dynamics and Behaviour - The system should allow users to interact with dy-

namic objects and receive immediate feedback. This aspect informs LUNA through the

use of property panels that resemble mixing boards, with large, intuitive sliders that

modify on-screen behavior.

5. Image and Idea - The language should allow complex, semantic transformations

to be performed easily without lengthy interactions. For example, setting up motion

capture or computer vision processes (e.g. transforming and image into semantic labels),

should be possible without a length set up process to define parameters. This criteria

influenced the decision in LUNA to require that each node provide intuitive default

behaviors as soon as it is first placed.

The expressive power of a procedural modeling language is influenced by both its

interface and the underlying structures that supports it. In the development of LUNA

interface design decisions have had direct effect on the structure and design of the

modeling language. This language structure, discussed in detail in Chapter 4, consists

of geometric and media elements that flow through an abstract graph, similar to systems

such as ConMan and Houdini. The primary contributions explored in this chapter are

the graphical user interface features that directly enable the abstract goals described

above.
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Figure 3.1: LUNA interface with full-screen background rendering and floating fore-
ground elements. Interface elements may be hidden, or moved to a second display, to
allow for live performances.

3.2.2 Workspace Layout

The general design of LUNA follows a workspace model, but one which has been

inverted from the common layout (see Figure 3.9). Typically, the work flow of a proce-

dural modeling tool employs a central view surrounded by menus and interaction panels.

In the interest of live performance, and in order to emphasize the result of aesthetic

explorations, this layout is inverted by using the entire display area as the space for the

output, while floating the interaction panels above the output. Rather than consider

the viewport as an intermediate result, as is common in other commercial packages (e.g.

Maya, Houdini), it is designed as a primary output window with high quality rendering
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using deferred shading techniques typically found in gaming. Of course, the layout is

flexible and all windows, in including the deferred shading output window, are resizeable

and movable.

3.2.3 Object Icons

Figure 3.2: Symbolic icons in LUNA with dominant color used to indicate the base
output type. The symbol uses the majority of the icon space.

In many visual graph languages, a tool bar with an iconic depiction of the object

is used to quickly identify objects of interest. However, once the object is placed on

the graph, the icon is removed and replaced by a textual description, object or class

name. The LUNA interface retains the symbolic icon, and enlarges it, with minimal

text above the graph object to describe its type, Figure 3.2. This allows the user to see,

at a glance, the visual meaning of each object in the graph. Careful design of the icons

gives a strong impression of the actual output the graph will produce.
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Figure 3.3: Colored tabs in LUNA (a) indicate media types as they flow through the
graph, with green for points and blue for curves, in comparisons with other data flow
interfaces from b) Soundium, c) Max/MSP, and d) Houdini.

3.2.4 Colored Inputs

Procedural graphs often use nodes with input and output tabs to represent the

arguments to a function. When constructing graphs, it can be difficult to determine

which nodes are compatible with which inputs and outputs, often necessitating a help

reference in order to construct syntactically valid graphs. In order to alleviate this

problem, LUNA uses colored tabs to identify compatible input nodes, shown in Figure

3.3. This allows the artist to quickly see what modality they are working with throughout

the design process. Objects without input tabs are generator objects, while objects

colored grey are modifiers which accept several media types as input.

3.2.5 Toolbar Design

The design of toolbars for large numbers of objects in procedural systems is an

on-going challenge. In many systems, objects are categorized according to workflow

10



Interface Design – Section 3.2

(a) Primary toolbar with categories for geometry output
types

(b) Secondary toolbar showing behavioral models, or func-
tional variants, of a given primary type. Each object also
has parameter inputs which are specific to it.

Figure 3.4: Two-level tool bar design intended to reflect the structure and function of
procedural objects. In this example, the secondary tool bar shows all behavioral objects
whose output type is a Point set (all are colored green).

categories of modeling, animation, characters, dynamics and rendering. In LUNA, a

two-level system is introduced. The primary tool bar represents the structural objects

of discrete geometry. These include: points, lines, curves, surfaces, images and video.

Selection of a geometry type at level one exposes a set of objects in the secondary tool

bar. The secondary bar shows all the different behavioral choices available for a given

primary type. These objects are interchangeable, such that any behavior which outputs

Points can be input to any node accepting points. For example, Particles, Fluids,
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Spiroids, Brownian, and Flocking all generate unique behaviors for a time-evolving

point set. Any of these may be input into other objects which accept points as input

(e.g. TimeCurves). This ability to quickly interchange behaviors is a major advantage

in creative explorations.

Figure 3.5: Objects have a base behaviour, printed above the icon, and an output
type, shown inside it. Smart connection allows the user to drag a line from one object
to another without precisely touching an input tab (the green line goes from object to
object). Also shown are vertical performance bars. A visibility icon (eye), allows the
user to see intermediate results.

3.2.6 Smart Connections

Typically, in order to connect two nodes, it is necessary to know the type and

meaning of arguments to both. In many cases, however, there is only one combination

of input types possible. For example, a generative terrain object may only require a

two-dimensional image representing height. We distinguish between primary, required,

inputs and secondary optional ones. When connecting objects, LUNA detects the se-

mantics of incoming objects and, wherever possible, directly connects these objects

without having to specify a specific input and output tab (Figure 3.5). With a single

click-drag motion, it is possible to quickly connect many objects in this way. In the
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future, for more refined control, the user might hover over an input tab to specify a

particular input.

3.2.7 Property Panel

Figure 3.6: Property panel in LUNA with
parameter sliders shown for the Tree object.

To further enable live performance,

and to provide precise control over node

parameters, a property panel is intro-

duced with an aesthetic based on sound

mixing. While the interface appearance

is reconfigurable, this design encourages

large sliders with clear labels over numeric

entry. The property panel is optionally

accessed by clicking on a graph node, a

top-down approach that places emphasis

on the graph, where high level decisions are made first, rather than on more exacting

parameter changes that can be made later. While only sliders are available currently,

in the future the panel may be extended to support other controllers.

3.2.8 Required Defaults

While implementing LUNA, it was realized that a drawback of some systems is that

inputs often must be exactly defined in order to produce any output. One design goal,

reflected in the design dimension of image/idea, is that complex operations should not
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be prohibitively difficult to specify to get a minimal result. Therefore, every node in

LUNA is required to have default behavior that produces output as soon as all required

inputs are connected. This often means that a generative node must be capable of

resampling or reducing the input size to a meaningful level to avoid stalling the system.

Creating any node, and connecting its visible input tabs, produces and immediate result.

Figure 3.7

3.3 Graphical Language Implementation

The structure of LUNA consist of a procedural modeling language and a graphical

user interface combined into a single graph architecture. The scene graph is a directed
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graph which contains objects for behavior, geometry, and interface. Unlike traditional

model-view-controller designs, in which the scene DAGs is kept separate from the inter-

face graph, LUNA combines these objects into a single graph and uses rich connection

semantics to keep them organized. Thus, multiple sub-graphs may overlap in the same

graph. The primary graph is a set of input/output connections that describe how to

render both GUI elements and three-dimensional objects, see Figure 3.7. This allows the

graphical interface and procedural models to be rendered by the rendering sub-system

in a uniform way. Of course, these objects must be handled differently during rendering,

so any object can indicate the style of evaluation it requires: 1) self-draw, used by GUIs

to draw themselves and their contents, 2) proxy, used by geometry to request that the

renderer build vertex buffers on the GPU, and 3) resources, used by images and mate-

rials to request persistent data available to multiple objects. The method of evaluation

differs for procedural models and graphical interface components. In general, the gen-

eration of complex procedural models are discussed in detail in Chapter 4, while this

chapter focuses on the evaluation on GUI elements, that is the visual and interactive

combination two and three-dimensional components in the system.

The overall architecture of LUNA consists of multiple sub-systems, including graph-

ics, video, networking, and input. These sub-systems are responsible for hardware or

device-level interactions with the scene graph, and each may communicate with the

graph in different ways. The graphics system, for example, renders any desired ob-

ject and keeps track of graphics state and GUI buffers for performance. The renderer
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traverses the graph, conceptually, from right-to-left starting from the top level 2D desk-

top GUI node, Render2D, which covers the workspace. This node may have multiple

Render2D and Render3D nodes connected to it as well, allowing for nested views and

three-dimensional windows. The input sub-system handles user interface events, and

traverses the same scene graph from root to leaf, but using a different set of functions

for event handling.

Time, i.e. motion, is handled by the application by inserting a global Time node

into the graph. The time node is unique in that it traverses the graph from the opposite

direction, triggering any behavioral nodes which accept time as an input. The causes

notifications to travel up the graph, informing any objects whose geometries or interfaces

must be updated on the next render frame. With this overall design, it is possible

to combine multiple semantics into a single graph architecture, simplify the need of

maintaining separate graphs for model, view and control.1

The idea of rendering in two and three-dimensions is implemented using nodes also

found in the scene graph. While a single graphics sub-system handles actual rendering,

the presence of rendering nodes allows the graph to invoke different coordinate spaces,

views, and windows as the graph is traversed during rendering. This allows both the

graphical interface and the user output to be generated by the same rendering evaluation

model. In Figure 3.7, for example, the Render3D node prepares the graphics system

to generate geometry for the Curves and Surfaces connected to it, while the Render2D

1While model, view and control are still present, the objects which represent these different facets
of the application are combined in the same graph through the diverse functionality present in each
object.
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node prepares a local two-dimensional canvas on which the GUI boxes representing

these objects are drawn. If the user interacts with the three-dimensional curve itself

(moving a vertex), this event passes down the Render3D portion of the graph from the

root, while if the user moves the two-dimensional box representing the curve, this event

passes down the Render2D portion of the graph.

3.4 Interaction Study and Evaluation

Figure 3.8: Reference object for interface testing, a woven sphere, is described in detail
in Appendix A.

To demonstrate the usability of LUNA in a practical context, a series of interaction

studies were performed by the author. Although there are few procedural data flow

languages with similar capabilities, these comparisons are done against Houdini using a

procedural reference object. As there are no common reference models for interactions

with procedural data flow systems, a novel object is introduced here. The object used

for testing is a woven sphere, shown in Figure 3.8, which consists of a simple system of

moving particles sampled to generate Bezier curves, normalized to a sphere, and lofted
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to create a set of tubes lying on the sphere. This model is described in further detail

in Appendix A. The woven sphere is a suitable object for interface testing because it

represents several specific steps which are unique to procedural systems. It includes an

animated system, intermediate objects of different types (points, curves and meshes),

and steps which must be introduced at the correct stages in the model graph to produce

the correct output. In addition, this object is uniquely procedural, and cannot be

constructed using traditional modeling techniques.

Figure 3.9: Reference model created in the Houdini interface. The model uses a Particle
SOP for initial point locations, a Point SOP /w a normalize expression to generate curves
and map these curves to the surface of a sphere, a Circle SOP (set to ‘polygons’) to
define the loft cross-section, and a Sweep SOP to build swept surfaces from these curves.
The Copy Stamping method is used to generate different random instances of curves,
with point inputs scaled to (0,0,0) so that the curves are not translated in space.
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To perform interface testing, the author constructed the reference model in both

Luna and Houdini 2 A log was kept of the challenges and problems encountered during

model construction, as well as a record of the time at each phase, which are reported

in Appendix B. Figure 3.9 shows the reference model being constructed in Houdini.

In general, the model requires knowledge of points, curves, and surfaces as it is being

constructed. However, these transformations in media type are not entirely clear in the

Houdini graph. Other interactions were also found to be difficult in Houdini. A certain

stages, detailed in Appendix B, it was necessary to know a particular, specific feature

of a node in order to correctly produce the output type needed for the next step. For

example, to generate the loft surfaces required by the model (tubes), the circle object

in Houdini must be changed from “primitive” output to a “polygon” output in order to

generate swept surfaces from cross-sections, otherwise the output remains blank. This

knowledge is generally found by referring to the reference documentation for particular

objects, which further detracts from the work flow. Overall, four hours were required

by the author to create the reference model in Houdini.

There are several ways to create this same model in LUNA. One may work from

right-to-left, imagining the form of the final result and filling in pre-requisite nodes that

are needed to activate it. Or, one may work from left-to-right, starting from the basic

structure of the model and building it into a final form. This latter approach is taken in

the following examples. Figure 3.10a shows the first of these steps, selecting Points type

2These interactions were the author’s first experiences with Houdini, so no prior knowledge was
assumed.
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Figure 3.10: Steps in creating the reference model in LUNA include a) creating a set of
Random Points as starting positions, b) producing curves by randomly sampling subsets
of the input points using the Subset Curves object, and c) normalizing the curves to a
sphere using a Spherify modifier.

from the main tool bar and dropping a Random Points node onto the canvas, producing

the result shown.
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The second step in this model, detailed in Appendix A, involves selection of several

random subsets of these points to be used as the CV control points for Bezier curves.

This is accomplished by dropping a Curve Subset object, and connecting the Random

Points into it, shown in Figure 3.10b. This produces a set of curves which randomly fill

the space occupied by the points. Graph connections are made using a single click-drag

motion from input to output. The third step is to map these curves onto a sphere. This

is accomplish in LUNA using the Spherify modifier, Figure 3.10c, which transforms any

object onto a sphere (by normalizing its points), in this case the curves are spherified.

In general, modifiers in LUNA are able to operate on any object, and their output takes

on the type of the input connected to them, thus the output of Spherify in this case is

another set of curves.

The final step in this example involves constructing swept surfaces from these curves.

The Loft object in LUNA performs this function, and takes two curves as required

inputs. The first specifies the cross-sectional shape of the surface, in this case a circle is

connected at the top. The second input is the curve set which represents multiple paths

along which this section will be swept. As the Spherify modifier outputs a set of curves,

this is used to express the paths we wish to loft, producing the final results shown in

Figure 3.11a. Using these nodes, the reference model can be created in this interface

with literally ten clicks (5 to select objects, 5 to drop them), and four click-drag motions

(connecting each node to the next).
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Figure 3.11: The final step in creating the reference model, a) connects the spherified
curves to a Loft object to generate swept surfaces. Alternative models are easily explored
by changing the order in which these high level actions are performed, such as b) where
the spherify operation acts directly on points, and c) where spherify is applied to a mesh
object.
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Admittedly there are several advantage given to LUNA here. First, many of the

nodes used here do not exist in Houdini. For example, the Spherify operation is not

found in Houdini by default, and it was necessary (see Appendix B) to write an ex-

pression to perform the spherify operation in Houdini, which reduces performance. In

addition, the author’s familiarity with LUNA suggests that the choice of nodes, and

their order of operation, may not be obvious to a new user of the language. The issue

of language familiarity, however, is partly addressed by the ease with which one can

discover different models in LUNA using very simple interactions. As the Spherify node

operates any geometry type, it can be connected at different stages in the graph. In

building the reference model, for example, the user may have thought to spherify the

points before generating curves. The result of this is shown in Figure 3.11b. Since the

Subset Curve object uses the points as control vertices in Bezier curves, the resulting

curves themselves may penerate into or protrude away from the sphere surface, pro-

ducing an incorrect model (relative to the reference goal). Using LUNA, the user can

transition from this model to the correct one with only three click-drag motions. Thus,

a unique contribution of LUNA is the ease with which new models can be generated

through its interface.

This basic interface, which favours combinatorial rearrangement over detailed pa-

rameter controls, allows one to rapidly explore the power of LUNA as a language for

procedural modeling. By connecting the spherify operation to the outcome of the loft

node, on gets a different result altogether (Figure 3.11c). This causes the verticies of
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the tube meshes to be spherified, which distorts their cross-sectional geometry and vol-

ume in interesting ways. Modifiers may be connected to other modifiers, providing a

limitless source of possible outcomes. While languages such as Houdini focus on the

detailed control of each node - which is also possible in LUNA using the property panel

- LUNA does not require this kind of detailed work flow in order create valid output,

or to explore new results. This makes LUNA particularly suited to its original goal of

serving creative exploration by media artists.

This brief demonstration was intended to show how one can quickly create novel

objects in LUNA. However, a more thorough interface study could be designed to reveal

more detailed results. To create a fair analysis, both Houdini and Luna would be

provided with the same object set by implementing custom nodes in Houdini. Although

it is difficult to find a task that represents overall creative exploration, one could ask

users to create any object that meets certain criteria, such as incorporating points,

curves and surfaces together. A detailed study might also reveal how these systems

balance expressive power and flexibility. These are future areas for possible examination.

In any case, there are few generic visual data flow languages for procedural modeling3.

Prior to such user-based interaction studies we can evaluation the LUNA interface

according to Green’s criteria for visual data flow langauges defined earlier. Early de-

cisions made in LUNA can be easily modified by reconnecting objects, so its level of

commitment is lower than that of Houdini. Progressive evaluation is supported in sev-

3Others include Xfrog and Groboto, but these are specialized systems. Artists tools like Soundium
are generative, but do not have a procedural aspect. See Chapter 2 for a comparison of systems.
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eral ways, by allowing the user to see intermediate results (using the ’eye’ icon) and

by giving direct feedback on parametric changes, features also available in Houdini, al-

though LUNA’s performance is better overall in this regard (see Chapter 4). The ability

to say what you want, expressiveness, can be interpreted in two ways. First, the power

to say what you want is potentially higher in Houdini as it is a more developed commer-

cial application, with support for more complex objects. However, expressiveness can

also mean the ease with which you can say what you want, and in that respect LUNA

may provide a better experience as its interaction produces more immediate results.

Regarding viscosity (resistance to change), LUNA was intentionally design to make it

very easy to modify objects and ideas interactively, and the use of color to denote media

type, large iconic representations of tasks, and overall layout give it a level of visibility

which makes it easier to see what you are making in comparison to Houdini. LUNA

is thus presented as a modern, dynamic, interactive alternative to current commercial

procedural modeling systems.

A more complex interface example is shown in Figure 3.12. In this example, two

particle systems and a cube primitive are used to generate complex arrangements using

two Scatter nodes. A material node, Flat Shade, is used to change the visual appearance

of both the overall object and the ground plane. The parameters to this material are

shown in the Property panel to the right, with the results shown above.
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Figure 3.12: Example of a complicated graph in LUNA, incorporating multiple surface
objects, modifiers, and materials.

3.5 Project Results

3.5.1 The Bones of Maria, Organic Art

To explore the expressive range of LUNA several creative, interdisciplinary projects

were developed using it. These include works with styles in digital and media arts. The
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Figure 3.13: The Bones of Maria. Generative art. Exhibit online at The Cultor, IT.
2010.

Bones of Maria, shown in Figure 3.13, is a generative art project using a smoothed

particle hydrodynamic (SPH) fluid system and time analysis to create organic, three-

dimensional, textured forms. These were shown in an online exhibition at The Cultor,

an arts and culture organization based in Torino, Italy. 4

3.5.2 Presence, Interactive Art

Presence is an interactive, site-based installation exhibited at the University of Cal-

ifornia Santa Barbara’s Davidson Library in 2009, Figure 3.14. A collaboration between

R. Hoetzlein, Dennis Adderton, and Jeff Elings, Presence consists of a high resolution,

virtual 360 degree panoramic photographs displayed on six screen. A camera detects

the motion of passing library patrons and rotates the panorama as they walk by.

4http://www.cultor.it/Pinacoteca2.html
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Figure 3.14: Presence. Interactive artwork exhibited at the University of California
Davidson Library, 2009.

3.5.3 Blocks, Game Design

An experimental game project called Blocks was created with Mark Zifchock and

Abraham Connelly using LUNA. Blocks is a universe of cubes where each has a unique

function. Some blocks act like water flows, moving at right angles into lower spaces.

Others are used to build terrain, bridges, and barriers. Logic blocks introduce com-

putational and, or and not gates expressed in cubes, while special blocks allow for

teleportation and wireless signaling. While Blocks was implemented using a custom
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Figure 3.15: Blocks. Game design by Mark Zifchock and Rama Hoetzlein. Created
using LUNA.

node in LUNA for the block-world simulation, the blocks universe may consists of mil-

lions of cubes, rendered using texture and Cg shader nodes in LUNA. A unique aspect

of Blocks is its own graphical interface, which includes a custom tool bar for selecting

block types. This interface was implemented using the same GUI graph architecture

used for LUNA itself, and both GUI elements (Blocks tool bar and LUNA’s object tool

bars) are rendered in the same graph together.

29



Chapter 3. LUNA: A Puzzle-Based Metaphor for Procedural Modeling

3.5.4 Procedural Modeling

Figure 3.16: Loft surface with high quality rendering created in LUNA using shadows
and depth-of-field

Other experiments with procedural modeling in LUNA are shown in Figures 3.16

and on the next page. In many cases, these images were constructed, generated and

rendered in a matter of seconds. The dynamic nature of the interface makes it very

easy to quickly replace an object with another node of a similar type. Thus, an artist

is able to rapidly experiment with different dynamic behaviors as this sequence shows.
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Figure 3.17
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3.5.5 Biological Modeling

Figure 3.18: Synthetic rendering created in LUNA (left) compared to real astrocyte
imagery of a rabbit retina. Blood vessels (blue) were modeled using a tree object, while
astrocytes (green) were modeled as Bezier curves using a physically based spring-system
with added noise.

These examples demonstrate that LUNA is able to achieve many distinct creative

styles. In addition to creative projects, a scientific collaboration with Mock, Brian

and Steve Fischer explored the use of LUNA to create synthetic models of real world

biology. Figure 3.18 shows an astrocyte image of a rabbit retina. Blue blood vessels are

shown next to green astrocyte cells. The synthetic model, at left, is the first example

of a procedural model whose goal is to visually match the structure of a micro-cellular
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network whose biological organization is unknown. The motivation for this on-going

project is to reproduce images sufficiently similar to real world microscopic slides that

vision algorithms used to detect astrocyte cell centers and geometry could be evaluated

on synthetic data with known ground truth.

3.6 Conclusions

A visual data flow language, LUNA, is presented for the creative exploration of

procedural models using an intuitive, minimalist interface. Its design follows from a

combinatorial approach influenced by a series of design goals established from creative

dimensions that are of particular interest to media artists. Experiments with the in-

terface show that it is possible to rapidly explore interesting, alternative designs by

quickly connecting and arranging high level tiles representing procedural objects. The

graphical interface in LUNA enables this by making specific use of layout, color, and

connection behavior to meet these design goals. In addition, LUNA itself is capable of

many different creative styles, including procedural and organic modeling, interactive

art using video input, game design, and high quality rendering with deferred shading.

Although any visual data flow language requires some symbolic interaction, the

features of LUNA are constructed to meet the needs to artists, allowing them to focus

on the task of exploring creative possibilities. The dimension of modality, for example, is

embedded in the two-level tool design and in the currently available media types, while

the dimensions of dynamics and structure are embedded in the temporal and geometric
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behavior of objects as they are manipulated by the graph. The critical features of

LUNA, established by these creative dimensions, are thus incorporated into both the

interface and the structure of the language.

While LUNA presents interesting possibilities, it is a new systems which would

benefit from further development and testing. Currently there are 29 nodes (as of Oct

2010) available in LUNA. One future goal is to expand this vocabulary to include audio,

video, and device interaction. In the area of interface design, the issue of the temporality

is not yet addressed as all nodes perform their actions continuously, making it difficult to

script different behaviors over time. This suggest an interactive timeline in addition to

the canvas area. Specific areas, such as the types of parameter controls in the property

panel (currently only sliders are present), also deserves more attention. Finally, user

studies may make it possible to establish real differences in expressive power between

LUNA and other languages.

LUNA is presented here as a novel interface for the construction of dynamic, creative

objects with interactive feedback, with specific examples showing how artists can use this

visual language to quickly create new and interesting models. Six creative dimensions of

interest to artists contribute to both the interface and structure of the language, result

in a system which is intentionally designed to meet the needs of media artists, with the

hope of unifying many of the diverse practices and techniques found in the digital visual

arts.
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Appendix A

Reference Model

Model P C K V U Verts Tris

Low res 50 25 8 28 8 5,600 9,450
Med res 150 100 8 42 12 50,400 90,200
High res 250 200 8 56 16 179,200 330,000

Figure A.1: Woven sphere reference model with parameter values for low, medium and
high resolution models.

The woven sphere is a procedural model defined as follows. Input consists of a

particle system with P points, generated randomly in a box from (-1,-1,-1) to (1,1,1)

and moving with a uniform velocity of 0.0025 in a random direction (arbitrary units,

time step is 1.0). As the points animate, they reflect off boundaries to remain inside

the initial volume. Described in LUNA notation:
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PSYSpoints ( P, init min < −1,−1,−1 >, init max < 1, 1, 1 >, init vel < 0.0025 >

)

From these points, random subsets are selected in groups of K to become the CV

control keys of C Bézier spline curves. The Bézier curves are sampled to a resolution of

V total sample vertices per curve. The curve order is 3 (cubic). The function is:

SUBSETcurves ( POINTSpoints, num keys K, num curves C, num samples V )

This generates C curves with K keys and V sampled points in each. These curves

are then spherified to a unit sphere (radius 1) by normalizing the points in each curve.

Note that it is incorrect to normalize the CV keys as the resulting curve may still

penetrate the sphere. The spherify function should operate on the final sampled points

to guarantee the sampled curve lies on the sphere. In procedural modeling terms, the

spherify function takes any geometric object (points, curves, meshes) and normalizes its

verticies. It is a typeless function defined by p’ =|p|:

SPHERIFY ( OBJ )

Finally, loft surfaces are generated by sweeping a circle along the curves. A circle of

radius 0.025, sampled with U verticies, is used as the cross-section. The paths are the

spherified curves of the previous step. The loft surface has a cylindrical topology with

only triangular faces, and no end caps. This produces a total of U*V verticies per loft,

and C*U*V verticies for the entire woven sphere object, with 2(U-1)(V-1) triangles per

loft, and 2(U-1)(V-1)C triangles for the whole object.
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CIRCLEcurve ( samples U )

LOFTmesh ( PATHcurves, SHAPEcurve )

The total function is:

LOFTmesh ( SPHERIFY( SUBSETcurves ( PSYSpoints(P, init vol, init vel), K, C,

V )), CIRCLEcurve ( U ) )

Parameter values and sample representations for the low, medium and high-res

models used in our tests can be found in Figure 3.8. For render performance testing in

real-time systems, it should be rendered at 1024x768 using a single Phong light source

and no shadows or anti-aliasing. When reporting results, ideally evaluation should be

separated from render time. Animation of the underlying particle system causes the

curves to gradually morph along the sphere surface.
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Appendix B

Houdini Interaction Study

Results of the interface test in Houdini for the reference model are shown here. No

prior knowledge of Houdini is assumed, although the author is familiar with procedural

modeling concepts. In total, it took around 4 hours to create this model in Houdini.

Elps Time Task Time Description

0:02 2 min Figure out how to create objects (must press enter)

0:08 6 min Cannot use Source on Particles (only Fluids)

0:13 5 min Source for Geometry used to emit particles. Needed
to explore help docs to find that Emission type pa-
rameter can be set to Volume.

0:44 31 min Trying to figure out how to build a curve from par-
ticles. No obvious function to generate curve from
points. Found an online forum: ”moving curves
points to the particle locations using a Point SOP”

0:59 15 min Time spent figuring out how to connect object sub-
graphs to one another. Incorrect assumption about
how Houdini works.

1:36 37 min Output: Now produces points moving on surface of
a sphere. Created a point SOP to shrink points to
a sphere. Learned that top-level graphs are not flow
networks, but heirarchy networks. So it is not possible
to connect object sub-graphs. Must copy nodes into
an object’s flow graph.
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1:51 15 min Moved the ’spherify’ node after the curve input, to
properly match reference model. Attempting to use
the Copy Stamping method to generate many curve
instances, after further reading of documentation.

2:06 15 min Discovery that graphs in Houdini compute entire ob-
jects first. I should not generate multiple curves, but
generate a complete curve-loft, then replicate.

2:18 12 min Skin Output of the Sweep SOP is not working. Not
sure why.

2:36 18 min Found that Circle primitive type must be changed
from Primitive to Polygon in order to generate swept
surfaces.

2:56 20 min Curve points are not spherified, only control keys.
To spherify curve itself, necessary to add a Convert
operator to make a Polyline.

3:01 5 min Output: Now produces curves moving on surface of
sphere. Determining relation between Level of Detail
and number of points generated, as I cannot precisely
control the curve sampling.

3:24 23 min Found that instancing was incorrect because ’stamp’
was not being used correctly. Took time to fig-
ure out it must be an expression of the form:
point(”particles”, $PT +

3:34 10 min Some time lost due to object path nam-
ing. Interface automatically inserts paths like
”obj/group/particles/”

3:51 17 min Output: Complete graph is working, with curves be-
coming loft tubes. Copy stamping is slow (expression
parsing?), probably a better way to do this. Cannot
stop it from translating curves to the particle loca-
tions.

3:54 3 min Hack was used to solve Copy Stamping translation
problem. Particles scaled to (0,0,0). This 0 point
particle set used as input to the Copy to Points node.

3:54 Output: Produces results that match the reference
model.
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