
Chapter 2

Tools for the Visual Media Artist: A
Survey

2.1 Changing Practice in Media Arts

The practices of first generation media artists are significantly different from current

ones as artists engaging with the computer for the first time had to deal with a different

set of problems than those working today. For example, first generation artists - those

working in the late 60s and early 70s (Michael Noll, Freider Nake, Charles Csuri) -

did not have generic graphics languages that could describe basic shapes, and found

it necessary to implement these directly [Dietrich, 1986]. Artist-scientists at the time

began developing the first computer languages for visual elements, such as Kenneth

Knowlton’s COMPART ER 56 and Leslie Mezei’s SPARTA. These tools, while mostly

experimental, set the context for graphics systems that would follow.

Today, graphics tools for visual artists are abundant. Many languages, such as Java,

Flash, and Processing, are based on the metaphors of earlier text-based languages, and

1



Chapter 2. Tools for the Visual Media Artist: A Survey

invite the artist to be programmers themselves. Such systems allow a great deal of

flexibility in describing behaviors. Other tools, such as Maya, Houdini, Xfrog and

Massive, present the artist with an application environment in which to express visual

objects. These systems generally make it easier to represent complex geometries, with

some focusing on hand-manipulated and articulated digital modelling while others focus

on procedural, or computationally, generated models. Still other tools present the artist

with visual data flow languages for interactively connecting objects to express ideas.

Since visual languages allow one to rapidly experiment with different configurations and

behaviors, these are often used in live performances with real-time graphics, examples

of which include Max/MSP, Soundium, and Quartz Composer. A final class of tools are

research frameworks, prototype systems which give a glimpse at how certain aspects that

are critical to artists may be resolved in the future. These are often used in education,

and include systems such as Squeak, Scratch, and Alice. Artists have used these to

experiment with programming education, virtual worlds and robotics.

With such a prolific choice of tools, one wonders if it is possible to integrate these

approaches into more unified frameworks? While choice is generally agreed to be an

asset to artists, there are numerous problems presented by having so many different

tools. First, if an artist learns a particular language such as Java, and then wishes to

explore geometric structures, they may need to invest addition time in a new language.

Second, some tools are better at certain tasks than others, which may force the artist

to switch tools. Maya, for example, provides extensive support for human character

2



Changing Practice in Media Arts – Section 2.1

modelling while Processing does not. This means that artists who enjoy Processing

are either forced to switch tools or must implement such structures themselves (at

great cost in time). The nature of interaction with the tool is also critical. Soundium

allows artists to dynamically, and interactively modify visual output while the system

is running. For those interested in live performance, this eliminates all other tools

which are not oriented toward real-time interaction and output. Finally, some features

critical to particular groups of artists, such as those interested in multi-screen output

for example, may be limited to only a few tools not capable of other aspects they wish

to explore.

The problem may be summarized as one of inter-operability. While all of the tools

available to artists cover the totality of what digital artists may currently do, their

lack of communication means that this totality is not actually realized without years of

learning many different systems. One approach to this problem is to connect various

tools together using communication and scripting languages such as OpenSC and Lua

[?]. However, this does not address the fact that certain structures are common across

several tools, and therefore in conflict with one another. For example, Maya supports

character modelling, but uses its own propriety renderer for real-time viewport render-

ing. Chromium is a low-level graphics system that supports multi-screen rendering,

yet combining this with Maya may result in a dramatic loss of performance. To give

another example, Houdini allows one to build objects declaratively (as a procedural

model), while Max/MSP output is based on the idea of signals flowing through a graph.

3



Chapter 2. Tools for the Visual Media Artist: A Survey

There are certain similarities between these languages, yet their integration must take

into account both ways of thinking of data.

Can systems be built which address the multiple dimensions of existing tools? This

questions is considered throughout this dissertation by examining several dimensions of

interest to media artists. These include: 1) programming, 2) modality and media, 3)

live performance, 4) dynamics and behavior, 5) structure and surface, and 6) image and

idea. While these dimensions are not exhaustive, they cover aspects of sculptural form,

live performance, and behavior, which are of interest to the author. A similar set of

questions could be formed around sound, information aesthetics (data), or game design,

for example.

The dimensions examined in this thesis cover forms of expression which may be in

conflict in current tools. To examine the current state of tools for visual media artists

more carefully, this chapter provides a survey of a few tools in the above areas of interest.

The tools considered here, and the reasons for their inclusion, are:

a) Processing - for its ability to express complex behaviors in a text-based lan-
guage
b) Max/MSP - for its signal processing methpor, and its use in live performance
c) VVVV - for its ability to achieve high performance visuals on multiple displays
d) Xfrog 5 - for its ability to declaratively model complex, organic objects
e) Groboto - for its ability to model abstract objects through generative, gram-
matic rules
f) Houdini 10 - for its ability to procedurally model dynamic, complex behaviors
and moving systems

4



Methodology: Inherent versus Creative Constraints – Section 2.2

Five of the six languages above are visual data flow languages, as this is the approach

taken toward LUNA, the integrated system described in this thesis. While many other

languages could be examined, these represent a sufficient challenge in terms of the

cross-section of features they offer to different communities. Processing is used widely

in education, while Max/MSP and VVVV are used in professional live performances.

Xfrog 5 is used as a professional system in commercial film for building organic virtual

worlds, while Houdini is used in film for visual special effects. Groboto is used primarily

by Braid Media to create organic art, and presented to the artistic community as an

experimental system for playing with grammatic forms. From a ceative perspective it

would be ideal if one could use the features of each without having to learn each system.

2.2 Methodology: Inherent versus Creative Constraints

There are many ways that digital tools for media artists might be evaluated. As

a basis for understanding these tools we might begin by considering their features.

However, it would be nice to be able to connect these features to artistic practice rather

than considering them in isolation. One possible approach, suggested by Linda Candy

is to consider digital tools as materials which constrain artistic process.

“Constraints in creativity are both limiting and liberating. They are used to
impose boundaries upon the creative space we occupy and at the same time enable
us to grapple with inherent tensions between different demands, which may lead
to a new idea, direction or artifact. When we choose particular forms, materials
and tools for our creative work, we are also choosing the kinds of constraints that
will shape our process and its outcomes.” [Candy, 2007]

5



Chapter 2. Tools for the Visual Media Artist: A Survey

We would like answers questions such as: When do digital tools help the artist?

When are they barriers? Answers to these questions would suggest ways to improve our

tools. However, as Candy mentions, for the artist, constraints may be both a positive,

useful, factor or an imposing one. Thus it is not entirely clear in which direction the

tools should evolve. Consider, however, that the “choice of a tool” directly leads to

the “kind of constraints” that shapes its outcome. This implies that there are inherent

constraints which are not at all associated with the artist, but are naturally part of the

tool itself. Consider that traditional painting requires a finite flat space while digital

painting does not (it may be infinite). The may be understood as an inherent aspect

of the art object coming into being through a media, and may be analysed through

Aristotle’s four causes, presented here by Heiddeger:

“For centuries philosophy has taught that there are four causes:
(1) the causa materialis, the matter out of which, for example, a silver chalice is
made
(2) the causa formalis, the form, the shape into which the material enters
(3) the causa finalis, the end, for example, the sacrificial rite in relation to which
the chalice is required, determined as to its form and matter;
(4) the causa efficiens, which brings about the effect that is the finished, actual
chalice, in this instance, the silversmith.”
[Heidegger, 1982]

The silver chalice, for example, has certain inherent constraints due to it being

made of silver, that have only to do with the choice of silver: ductility, weight, and

color. This may be distinguished from the artistic choice of using silver itself, or the

shape of the chalice, or the purpose or message it conveys. The following definitions

6



Methodology: Inherent versus Creative Constraints – Section 2.2

help to distinguish inherent constraints from creative constraints in examining digital

tools.

Inherent constraints: Rules imposed by the media selected by the artist to resolve
the material cause of the work.

Creative constraints: Rules imposed by the artist to resolve the process and idea
toward the formal and final causes.

Of course, the artist is free to choose a particular tool, and this is a creative con-

straint, but once the choice is made the tool brings with itself its own inherent con-

straints. George Whales explains that it can be quite difficult to determine “which

limitations are real and which are illusory.” [Candy and Edmonds, 2002, p. 251]. He

gives the example of a virtual reality system, initialized with four walls by its creators,

that were seen as an artificial limitation by the artist. In this example, the four walls

at first appear to be an inherent constraint imposed by the system. Yet these are easily

removed. Thus, the flexible limitations in technical media are due to different layers of

the medium being either loosely constrained or deeply constrained - to the programmer

there is no hard boundary between inherent constraints. It is easy to remove the ground

plane from a 3D modeling program; it is more difficult to convert a 2D modeling system

into a 3D one. Thus, it is essential that as artists work they learn the fundamental

premise of particular systems.

Creative constraints, on the other hand, are those introduced by the artist him or

herself to resolve a boundary, or inner tension in the work. They are positive factors in

that they are conscious, free choices by the artist. For example, to upset the cultural

7



Chapter 2. Tools for the Visual Media Artist: A Survey

status of painting, Joan Miró choose to work for a time with only black charcoal and

found objects in paintings during his “assassination of painting” [Miró, 2008]. This is a

creative constraint intended to resolve a particular conceptual challenge.

Thus, when speaking of software tools, the inherent constraints are those which are

most deeply embedded in the system, and one way to conceptualize them is that they

remove the element of choice from the artist. When choosing a tool the artist may

not know all of the constraints involved, but after a time they learn that some inherent

constraints are immovable, and they must either contact the tool developers, re-engineer

the system, or switch tools. Whales’ point that this is not easily determined reflects

the fact that digital tools are complex systems whose boundaries may not even be fully

understood by its developers.

As a basis for analysing digital media, inherent constraints provide a way to exam-

ine tools irrespective of their use. We can ask: Regardless of whether the artist may

choose to embrace or abandon a constraint what are the inherent constraints of a given

tool? While a “feature set” describes the unique capabilities of a tool (beyond its basic

functionality), inherent constraints describe what would be fundamentally difficult for

the artist to do at each level of the tool. This may be a more valuable representation

of where digital tools should focus next as it explores what choices the artist would like

to have available, while a feature only describe what is currently available.

The tools examined in this survey include Processing, Max/MSP/Jitter, VVVV,

Xfrog Plants, Groboto, and Houdini. The focus in this analysis is on tools for visual

8



Survey of Tools – Section 2.3

media arts (rather than music), and these tools represent a cross-section of different

approaches to the exploration of form and space in media arts. From this point forward

the word “constraint” will be used to refer to inherent constraints introduced by the

tool, versus creative decisions made by the artist.

2.3 Survey of Tools

2.3.1 Processing

Figure 2.1: Processing, software for media arts developed by Casey Reas and Benjamin
Fry, shown next to artwork by Casey Reas. Path 00, 2001. Print on velvet, 32”x32”

Processing was developed and first released in 2001 by Casey Reas and Benjamin

Fry, both originally from the Aesthetics and Computation Group of the MIT Media

9



Chapter 2. Tools for the Visual Media Artist: A Survey

Lab. Processing is a free, text-based language derived from Java which was written to

“promote easy-of-use” in the creation of media artworks.

“Processing was created to teach fundamentals of computer programming within
a visual context, to serve as software sketchbook, and to be used as a production
tool. Students, artists, design professionals, and researchers use it for learning,
prototyping, and production.” [Reas and Fry, 2006]

Users of Processing have created a wide array of project, examples of which can be

found on the processing.org website. Due to the authors backgrounds in information

visualization, projects created with Processing tend to have an information aesthetic.

This may be partly due to the authors backgrounds, but also to the base language Java.

Processing’s functionality, for example, is not particular well suited to 3D graphics, and

Java is not the language most commonly used for 3D due to its performance (which

is C/C++). However, Java is a hardware-independent language, which means that

Processing projects are more capable of being run directly on the web in a browser.

As a text-based language, Processing requires some programming experience, but

this is exactly what it was intended to teach. Processing is one of the first tools to

allow novice programmers the ability to quickly prototype and experiment with simple,

animated, and generative two-dimensional images and shapes. Although more involved,

Processing may be exported to other tools, such as Open Sound Control (OSC) for audio

synthesis, or to third-party rendering tools, an example of which is Platonic Solids by

Michael Hansmeyer [Hansmeyer, 2010]. Artists have continued to extend Processing

10



Survey of Tools – Section 2.3

with hardware input (camera tracking, LEDs), and have used Processing in exhibitions

worldwide.

In understanding the inherent constraints of a tool, the best resource is a language

reference. A online reference shows the base functionality that Processing offers1. This

includes lines, arcs, quads, images, Bezier curves, noise, matrices and mathematical

operations, a tool set which is oriented primarily toward drawing of fundamental two-

dimensional shapes. While this language is natural as a learning tool, it constrains

the output to a certain class of objects. Output resolution may be limited in size, and

while intended for 2D, performance may not easily allow tens of thousands of objects.

Although it would be possible for an artist to author code to animate two-dimensional

articulated figures, these are not part of the base language. While some 3D features

are available in Processing, its ability to animate solid, three-dimensional forms is not

its primary use, and while it allows for single-frame video processing, it is also not

intended as a video editing tool. Processing’s strength is in the autonomous generation

of abstraction two-dimensional shapes, and its ease of use as a programming language,

which can be seen in project samples (see Figure 1.1).

2.3.2 Max/MSP/Jitter

Max/MSP was created by Miller Puckette, who was also at the MIT Media Lab from

1985 to 1987. Since then, he developed Max/MSP and Pure Data (Pd) as graphical

programming languages for music synthesis. While primarily a tool for music synthesis,

1This reference can be found at http://processing.org/reference/

11



Chapter 2. Tools for the Visual Media Artist: A Survey

Figure 2.2: Max/MSP, software by Cycling 74, developed by Miller Puckette with
visuals using Jitter developed by Joshua Kit Clayton in 2003. Artwork by Christopher
James, 2006 from Third Space Mind.

Max/MSP/Jitter is considered here due to the introduction of Jitter in 2003 by Joshua

Kit Clayton, which provides support for matrices, and visual output in OpenGL. Ma-

trices are an essential aspect to the use of Max/MSP/Jitter as a visual tool:

“It is important to note that what we have called the spatial dimensions of a
matrix need not be interpreted spatially. For instance, as we will see later, it
is possible to transcode audio signals into one-dimensional matrices for Jitter-
based processing, or to represent the vertices of an OpenGL geometric model as
a multi-plane, one-dimensional matrix.” [Jones and Nevile, 2005]

The concept of transcoding is central to the Max/MSP/Jitter workflow. The strength

of this is that any object may be interpreted by another component as a different type.

A drawback, however, is that the user must be constantly aware of the internal ma-

trix structure, which is not directly visible, as it flows through the graph. In addition,

transcoding from a one-dimensional audio signal to a three-dimensional object is not typ-

12



Survey of Tools – Section 2.3

ically a direct process. Thus, its more common to introduce translators that transcode

into the desired output. Nonetheless, the metaphor is valuable for the flexibility it offers.

Max/MSP/Jitter has found a wide user-base in the audio synthesis world with an

increasing number of projects using visual output. The interface to Max/MSP is a

visual data flow language, which benefits the author by placing the code in the same

place as user interface controls. Distinct from text-based languages like Processing,

Max/MSP patches look very much like both a visual graph and sound mixing boards.

[Cycling74, 2010]

The visual programming interface is also a point of some contention as patches

can become cluttered. In studying visual data flow languages, Johnston has found

that this may be due to visual languages being used to mimic text-based programming

[Johnston et al., 2004]. When expressions and equations are represented as nodes in

a graph, it requires a larger number of connections to create modules with high-level

functionality. As Max/MSP is primary a signal processing tool, this is often the case as

signals flow through filter nodes expressed by equations.

Max/MSP/Jitter performs visual output using OpenGL, which will be higher per-

formance than Processing. Using OpenGL also allows for three-dimensional geometry,

Cg shaders and more complex graphical effects. However, typically the author must

code these directly as they are not part of the base feature set of Max/MSP/Jitter.

This requires knowledge of other languages such as C/C++ or Cg, and also limits pos-

sibilities for generative modeling. However, it is important to emphasize Max/MSP is

13



Chapter 2. Tools for the Visual Media Artist: A Survey

was originally a signal processing tool for music, and only recently a system for visual

arts.

A large user community has developed around Max/MSP which exchanges code,

patches, and modules for reuse by the community. Overall, the Max/MSP/Jitter allows

novice artists to develop ideas in a visual interface, and is used increasingly by media

artists for professional performances.

2.3.3 VVVV

VVVV was created by Sebastian Oschatz, Max Wolf and Joreg through a company

called MESO. MESO was founded in 1987 as a design team of computer scientists and

artists to work on large, interactive installations. VVVV was primarily an in-house tool

until it was released as free software in 2002. [Meso, 1998]

VVVV also uses a visual programming language to prototype media artworks. Un-

like Max/MSP, however, VVVV focuses on the visual arts and includes some high-level

components for graphical transformations. VVVV lies between the low-level signal pro-

cessing of Max/MSP and the generative modeling capabilities of Houdini. A node library

provides a wide range of capabilities, from quaternions to 3D animation, to color and

video. While VVVV can load static 3D geometry, and has 3D modules, these are not

as abstract or generative as a procedural language like Houdini, and creating dynamic

three-dimensional forms is equal difficult as with Max/MSP.

14



Survey of Tools – Section 2.3

Figure 2.3: VVVV, software for media artists developed by Meso studios and made
freely available in 2002. The butterfly sequence, entitled Flutter, is composed on 88
double-sided screens using VVVV by Cinimod Studio, 2010.

VVVV is best suited to large scale, interactive, visual installations. The Galeŕıa

(http://vvvv.org) shows a number of major projects created with VVVV as well as

many gallery installations. VVVV may be considered an installation tool as its workflow

and user modules are focused on real-time imagery. A tutorial, for example, shows how

to use VVVV to project live images onto physical surfaces.

15



Chapter 2. Tools for the Visual Media Artist: A Survey

Rendering to multiple displays is a desirable feature among professional artists.

Unlike the other systems mentioned, VVVV includes direct support for multiple displays

using a client-server system called “boygrouping”, in which many client computers are

controlled from a server. However, VVVV relies on DirectX for rendering, which restricts

its use to Microsoft Windows systems. DirectX has many of the same features as

OpenGL, and is an industry standard for game development, so it benefits from the

most recent graphics hardware developments. In VVVV, this can be found in shader

support which, like Max/MSP, must be coded in another language (HLSL) by the artist.

VVVV is unique as a tool for visual media artists, and as a visual programming

language it is easy to create projects quickly. Its language is focused more toward visual

output, and features a large number of modules for graphics, images, and hardware.

VVVV is used by VJs and artists to create high quality, interactive installations and

performances.

16



Survey of Tools – Section 2.3

Figure 2.4: Xfrog is a commercial system for organic modeling and plants by Xfrog,
Inc. Xfrog is often integrated into the workflow of other modeling tools, such as Maya
or Cinema4D, as shown here.

2.3.4 Xfrog 5

Xfrog is a procedural modeling tool developed by Oliver Deussen and Bernd Lintermann

for Xfrog, Inc. The authors, originally from the ZKM Karlsruhe institute in Germany,

created Xfrog to allow for generative modeling of organic forms [Deussen and Lintermann, 2004].

Unlike the other system, Xfrog is the first tool considered here which uses a procedural

modeling workflow to create forms. This method is similar to the way a sculptor works,

by successively manipulating models with a specific structure.

17



Chapter 2. Tools for the Visual Media Artist: A Survey

Figure 2.5: Kleine Spielerei, by Jan Walter Schliep (2009), demonstrates high quality
renderings produced using Xfrog.

Xfrog is primarily a tool for the visual effects community, and focuses especially on

organic and architectural models. The visual dataflow language of Xfrog allows artists to

easily create three-dimensional structures like plants, as exemplified by its key modules:

Branch object, Phyllotaxis object, Tropism object, Curve object. These structures can

be combined in a procedural workflow that allows the artist to work with generative

functions. [Deussen and Lintermann, 2004, p. 251]

As a production level tool, Xfrog outputs primarily to third-party rendering systems

such as V-Ray, MentalRay, or Maya, for high quality, photo-realistic output. Due

to its focus on organic modeling, its capabilities for information aesthetics, hardware

interfacing, and real-time performance are limited. Although it has a real-time viewport

18



Survey of Tools – Section 2.3

it is unable to render quality images in real-time for interaction or live performance.

However, due to its offline rendering workflow, unlike Max/MSP or VVVV, it can easily

render high quality images for large format printing.

While used by digital artists more than by media artists, it is mentioned here because

it offers a procedural workflow distinct from the other performance-oriented systems.

This workflow, while also employing a visual language, enables structurally defined ge-

ometric models to be described using visual grammars. These grammars can express

organic relationships such as branching structures or spiral phyllotaxis (e.g. the com-

pact, spiral arrangement of buds on a sunflower), using models and textures defined

by the user. The benefit of Xfrogs to graphically-oriented artists is that geometric ob-

jects can be expressed as functional models that respond to structural changes without

having to directly implement primitive geometries oneself.

2.3.5 Groboto

Groboto is a procedural tool created by Darrel Anderson of BRAID Media Artists.

Like Xfrog, Groboto uses a visual modeling workflow for generating three-dimensional

forms. One distinction, however, is that Groboto focuses more on the behavioral and

abstract generative aspects of form than Xfrog, which is realized more as a procedural

modeling tool.

Groboto employs a rule-based system for modeling which introduces specific benefits

and constraints in the types of objects it can express. This is a system in which objects

19



Chapter 2. Tools for the Visual Media Artist: A Survey

Figure 2.6: Groboto, created by BRAID Media Artists and Darrel Anderson.

generate similar forms, or replace forms, in proximity to one another using an automated

logic, or grammar [Anderson, 2008]. These grammars are capable of producing complex

structures from a very compact initial set of rules. However, unlike procedural models

found in Xfrog, these models typically do not have a dynamic functional aspect - they

may exist as complex forms in space, but cannot also move or respond to changes over

time. Later developments in functional systems, as found in Houdini in the next section

for example, combine the benefits of both grammar systems and procedural modeling.

The gallery examples presented by Groboto exemplify the playful nature of using the

system. While Groboto also outputs to third-party renderers, and is therefore similar

20



Survey of Tools – Section 2.3

to Xfrog in this regard, it allows users to very quickly create models of a specific class

but with arbitrary complexity. The results, which can be found on the BRAID Media

Arts website (http://braid.com), are abstract, generative three-dimensional structures

which resemble gravity-free architectures.

These two approaches, procedural modeling in Xfrog plants, and rule-based modeling

in Groboto, exemplify potential workflows for media arts which are not yet fully realized

as a whole. They are distinct from one another in that they present differing degrees

of control and different structural tools to the artist. In addition, Xfrog and Groboto

are offline systems which typically do not have the support for real-time rendering,

hardware input, and information design which are needed for interactive performances

by media artists. Nonetheless, their ability to express complex geometric forms is much

greater than the previously examined tools for media artists. The audience for Grobot

is targeted toward experimental visual artists, while Xfrog is focused on organic worlds

for commercial film.

2.3.6 Houdini 10

Houdini 10 is the flag-ship software product of Side Effects Software. A member of the

original CGI film companies which include Wavefront, Alias, Autodesk and Softimage,

Side Effects Software was developed to support the special effects industry. Houdini

is mentioned here because of its unique support for procedural modeling (rather than

scene-based modeling), and has been used in a wide number of feature films.

21



Chapter 2. Tools for the Visual Media Artist: A Survey

Figure 2.7: Gestrüpp, by depotVisuals GbR (2010), demonstrates complex, organic
modeling created using Houdini 10, by Side Effects Software.

Houdini is also a visual programming language, with an extensive set of procedural

tools. As a production level tool, it has its own benefits and drawbacks. Primary among

the benefits are the power and flexibility in modeling that can be achieved once the user

overcomes its learning curve. As with other production tools, a drawback is that this

power comes at the cost of a complex interface and significant time needed to learn the

language. Houdini is capable of very specific operations, and of performing these on

detailed geometric models which may be either generated or captured from real-world

models.

22



Survey of Tools – Section 2.3

Houdini uses graphs to express both hierarchical relationships and functional flow.

This is another example of the complexity of a problem informing interface design, as

Houdini is intended to model real world objects in sufficient detail for film production.

Unlike the other platforms studied, Houdini is the only system here which features

complex systems such as characters, fluids, fire, and smoke. Thus, Houdini may be con-

sidered the counterpoint to the low-level information aesthetic, and shape-based designs

of Processing or Max/MSP. While many other effects are possible, typically only ad-

vanced users are capable of exploring the full expressiveness of the tool [Carlson, 2010].

Figure 2.8: Interface to Houdini 10, showing a reference model used later in this thesis
(see Chapter 4).

Where Houdini excels is in procedural modeling, which it supports through a visual

data flow interface. This highly developed interface allows artists to create complex

23



Chapter 2. Tools for the Visual Media Artist: A Survey

models that change in both structure and behaviour over time. Nested graphs (modules)

let users express objects that can be affected by other objects. The cost of this flexibility,

however, is that peculiarities of the system can take a great deal of time to master. Some

of the specific issues in using Houdini are explored in further detail in Chapters 3 and

4. One finding is that achieving complex behavior often requires that the user write

expressions, so that despite its visual interface it still requires mathematical knowledge

to be used effectively. More importantly, this work flow is orthogonal to other goals

of media artists, such as live performance. The detail-oriented nature of modeling in

Houdini, suitable for commercial film, could not be easily modified to enable dynamic

changes during a performance. In general, Houdini is a highly successful, powerful

application for developing complex special effects in an offline environment.

2.4 Tools Summary

Tools available to visual media artists range from low-level signal processing to high-

level procedural modeling of complex objects. The tools explored here, Processing,

Max/MSP, VVVV, Xfrog, Groboto and Houdini are summarized in Figure 1.9. This

table gives an overview of their history and design, a consideration of the output options

available in each, and a look at the types of objects that they can express.

It is important to note that emphasis is placed on the ease with which the tool

supports a given modality, but this does not imply a tool cannot achieve another feature

listed - only that it would be relatively difficult or time consuming for the artist to do

24



Tools Summary – Section 2.4

Figure 2.9: Survey of tools for visual media artists. Major categories are a) Overview
and history, b) Object representation workflows, and c) Output modalities.

so. For example, it is possible to build a three-dimensional procedural modeling system

on top of Processing, but this would be a long term development problem in itself,

and Processing is not necessarily the best environment to explore this. The table thus

reflects the current, deep constraints, of the systems shown.

An interesting aspect of these results is the difference between low-level and high-

level modeling. In terms of object support, this expresses itself as a difference in ability

25



Chapter 2. Tools for the Visual Media Artist: A Survey

to support information aesthetics versus complex object models like characters. This

may be due to a divergence of practice between media artists and commercial artists,

with the later specifically targeting offline computation of complex systems and real

world objects for use in film. Yet there is no inherent reason why tools could not be

created which support both. Rather, this is a consequence of the different paths these

communities have taken in their aesthetic goals.

Another key distinction, related to the previous one, is a difference in output modali-

ties. Processing, Max/MSP, and VVVV all offer real-time, full screen, interactive output

for live performance. Xfrog, Groboto, and Houdini don’t allow this, but they do offer

high resolution printing, and offline third-party rendering for photo realistic, anti-aliased

(high quality) image generation. As can be see in modern video games, however, there

is an increasing shift toward high quality rendering with real-time interaction provided

by modern graphics cards. However, this technology is generally not yet available to

media artists in a way which is not restricted to the specific objects of gaming, such as

characters and terrains.

The only system which comes with multiple display support is VVVV. This is unfor-

tunate, considering that this is a common format for architectural media installations.

The present solution, for many artists, is to run several instances of the same application

and synchronize their output using message passing. This allows the artwork to exist

on multiple displays, but can require significant overhead in development time for the

artist or engineer, and makes poor use of system resources. Multiple screen rendering

26



Tools Summary – Section 2.4

is an on-going field of research, while only a few existing tools take advantage of this

format.

Even among the tools specifically designed for media artists, Processing, Max/MSP

and VVVV, there are no similarities in terms of programming language or output graph-

ics system. The first uses the Java-language with Java graphics output, while the others

using visual data flow languages with output in either OpenGL or DirectX. Since learn-

ing a programming language is a large time investment, this means that the upcoming

artist is required to pick a tool which may dictate the next several years of project

design. Unless the artist is willing to invest in learning multiple tools, this implies that

media artists will gather around languages. These communities are not distinguished

by creative vision (movements centered around ideas), but by artificial communities

based only on underlying language, and thus impose an unnecessary restriction on

cross-communication. More importantly, as examples show, tool selection guides the

creative ideas of artists into particular, constrained paths.

In general, there is currently no one tool which supports all of the primary work

flows desirable to the media artist. The above list represents a range of tools currently

available, yet none of these covers all of the dimensions of interest to artists. Of course, it

is questionable whether a single tool could be designed to expressing this full range, yet

the current situation is equally challenging as current tools do not necessarily provide

the right set of features needed to explore an idea. An integrated tool would ideally

combine many different styles of expression.

27



Chapter 2. Tools for the Visual Media Artist: A Survey

These results may explain why many media artists still choose to learn text-based

low-level languages such as C/C++, Java, or Flash. First generation media artists

learned more fundamental languages to retain the ability to explore whatever concepts

were desired. Yet, even in examples such as Cohen’s AARON, we can see that learning

a low-level language introduces inherent constraints in the types of output. AARON,

for example, is not a system designed for animation. In many cases, the artist accepts

the inherent constraint as a creative constraint, and uses it to guide the work forward.

Learning a low-level language can thus provide the basic theory needed to cross different

domains, while higher level tools are need to explore other ideas, or to extend into other

output modalities without spending years in implementing basic structures oneself.

One clear conclusion is that there is an artificial divide between tools which directly

impacts the goals of media artists. Visual artists with a sculptural background, for

example, will find that there is no tool yet which offers procedural modeling of complex

structural forms with real-time, high quality output for live performance. Support for

complex objects like characters, fluids and terrain are currently restricted to high-end

modeling packages, and while not all artists will want to use these, we can imagine that

many may wish to. Thus, the current state of creative expression for media artists lags

behind the more well funded film and game industry by several years in terms of complex

geometric forms. However, to a greater extent than industry, media artists have created

tools to explore real-time rendering, multiple displays, hardware interaction, and live

28



Tools Summary – Section 2.4

performance. There is no theoretical reason, from a software perspective, that this

divide need exist.

29



30



Bibliography

[Anderson, 2008] Anderson, D. (2008). Groboto. http://www.groboto.com, accessed

June 2010. Published by Braid Arts Labs.

[Candy, 2007] Candy, L. (2007). Constraints and creativity in the digital arts. Leonardo,

40(4):366–367.

[Candy and Edmonds, 2002] Candy, L. and Edmonds, E. (2002). Explorations in art

and technology. Springer-Verlag, London, UK.

[Carlson, 2010] Carlson, W. (2010). Animation software companies and individuals.

http://design.osu.edu/carlson/history/tree/ani-software.html, accessed June 2010.

Lecture notes.

[Cycling74, 2010] Cycling74 (2010). Max/msp software. http://cycling74.com/, ac-

cessed Oct 2010.

[Deussen and Lintermann, 2004] Deussen, O. and Lintermann, B. (2004). Digital De-

sign of Nature: Computer Generated Plants and Organics. SpringerVerlag.

31



Bibliography

[Dietrich, 1986] Dietrich, F. (1986). Visual intelligence: The first decade of computer

art (1965-1975). Leonardo, 19(2):159–169.

[Hansmeyer, 2010] Hansmeyer, M. (2010). Platonic solids. http://www.michael-

hansmeyer.com/, accessed Oct 2010.

[Heidegger, 1982] Heidegger, M. (1982). The Question Concerning Technology, and

Other Essays. Harper Perennial.

[Johnston et al., 2004] Johnston, W. M., Hanna, J. R. P., and Millar, R. J. (2004).

Advances in dataflow programming languages. ACM Comput. Surv., 36(1):1–34.

[Jones and Nevile, 2005] Jones, R. and Nevile, B. (2005). Creating visual music in

jitter: Approaches and techniques. Comput. Music J., 29(4):55–70.

[Meso, 1998] Meso (1998). Vvvv: A multipurpose toolkit. http://www.meso.net/vvvv,

accessed June 2010.

[Miró, 2008] Miró, J. (2008). Joan miró: Painting and anti-painting 19271937. Exhibi-

tion catalog.

[Reas and Fry, 2006] Reas, C. and Fry, B. (2006). Processing: programming for the

media arts. AI & Society, 20(4):526–538.

32


