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Chapter 5 
 
Language & Representation 

 

Time flies like an arrow 
Fruit flies like a banana  

       Groucho Marx 
 

Natural language is ambiguous. Words have multiple meanings, which can 

lead to several ways of parsing a sentence. An example used frequently in 

natural language processing is "Time flies like an arrow", which can mean 1) 

Time flies the way an arrow does, 2) Measure how fast the flies are, as you 

would an arrow, 3) Measure how fast the flies are, as an arrow would, or 4) A 

special kind of fly, the time fly, likes arrows [5-1]. Sentences can also be 

interpreted literally or figuratively, as in the sentence "She flew to the bank" 

which may mean she took an airplane to the bank, or she went to the bank 

quickly. The bank may be for holding money, or it may be the bank of a river. 

 

5.1. Grammar 

 

Natural language allows us to make complex assertions about the world. The 

database and semantic network systems explored in the previous chapter 

offer various degrees of expressive power and flexibility but are all 

simplifications of written language. The particular differences between them 
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will be formally investigated here and a new design introduced for 

representing complex knowledge that is both flexible and efficient.  

 

The relational database is, semantically speaking, the simplest system 

introduced so far. To observe the assertions made in a relational database, 

we can "translate" the meaning of the database back into natural language. 

An interpretation of Figure 4.7. from the previous chapter would give us: 

 

 

Galileo is a person.  Galileo was born in Pisa. 

Copernicus is a person. Copernicus was born in Turin. 
 

Newton is a person. Newton was born in Woolsthorpe. 
 

Einstein is a person. Einstein was born in Ulm. 
 

Heisenberg is a person. Heisbenberg was born in Wurzburg. 
 

Newton was a physicist. Galileo was an astronomer. 
 

Einstein was a physicist Copernicus was an astronomer.  

 Heisenberg was a physicist. 
 

        
        .   

 
This is a direct translation of the assertions made in the database. If we were 

to read this in a book, it would be found in the more compact form of natural 

language: 

Table 5.1. Translating a relational database 
back into English language.  
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Galileo and Copernicus, both astronomers, were born in Pisa and 
Torun respectively. The physicists Newton, Einstein and Heisenberg  
were born in Woolsthorpe, Ulm and Wurzburg. 
 
 

The fact that the names refer to people is taken for granted while the reader is 

assumed to know, or be able to look up, what countries these cities are found 

in. Interestingly, the natural language version uses twenty-five words while 

the expanded version above uses sixty-nine. However, when stored in a 

relational database only twelve words are needed: five people, five places, 

and two occupations, while the relationships take negligible additional space. 

These issues of expressiveness and efficiency will be revisited. 

 

Many sentences can be deconstructed in this way. Consider another example 

from Asimov's encyclopedia of science and technology: 

"Turing attended Cambridge University and was elected a fellow of 
King's College, Cambridge in 1935. Between 1936 and 1938 Turing 
worked at Princeton University in New Jersey and, while there, dealt 
with the theoretical concept of the so-called Turing machine, a 
computer capable of the most general computations."  [5-2] 

 
Which is expanded as: 
 
 Turing is a person. 
 Turing attended Cambridge University. 
 Turing was elected fellow at King's College in 1935. 
 Turing worked at Princeton University from 1936 to 1938. 
 Princeton University is in New Jersey 
 Turing developed the Turing Machine. 
 Turing worked on the Turing Machine while at Princeton University. 
 The Turing Machine is a theoretical computer. 
 The Turing Machine is capable of general computation. 
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This would be difficult to represent with a relational database as we must 

define the schema for people, universities, inventions, geography, machines, 

and things-that-happen-to-people - ahead of time. How many tables should 

be defined? The number of possible relationships cannot be known a priori. 

Thus the relational database, while suitable for certain kinds of knowledge, is 

not an ideal system for complex statements.  

 

 

  

 

A semantic network is another potential structure, but provides only singular 

relationships between entities. In Figure 5.1, we can state that "Turing 

developed the Turing machine", but not that it was developed at Princeton 

Figure 5.1. Semantic network for a set of statements about Turing. 
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University. Notice the qualification should properly be associated with the 

verb "developed", and cannot be introduced as a direct link from Turing 

Machine to Princeton University (what would this mean?).  

 

However, rearranging these statements by placing the subject of the 

sentence first, we can form groups of sentences which have the same 

subject. Those sentences dealing with Turing as subject are grouped 

together: 

Turing is a person. 
 Turing attended Cambridge University. 
 Turing was elected fellow at King's College in 1935. 
 Turing worked at Princeton University from 1936 to 1938. 
 Turing developed the Turing Machine. 
 Turing worked on the Turing Machine while at Princeton University. 
 

If we represent Turing as a node in a semantic network, then each sentence 

with Turing as the subject is defined by the edges leaving that node (Figure 

5.2). 
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A standard semantic network does not allow us to convey the grammar of a 

complex sentence. This is resolved by constructing a semantic hypergraph, 

where each edge is a word-vector set with n words rather than a single 

relationship. In this way, the words contained in the edge can also be nodes 

in the graph as shown in Figure 5.2. The network is a partially-acyclic directed 

hypergraph.1  In linguistic terms, the vectored edges allow for a richer 

grammar than the subject-verb-object relationships of traditional semantic 

networks. 

                                                
1  It is directed because the meaning of each sentence is directional from subject to objects 
and is partially acyclic because each edge is a vector of words while some, but not all, of 
these words may refer back to the first node in the vector.  

Figure 5.2. Hypergraph network for statements about Turing. 
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The hypergraph is a relatively new structure for expressing semantic 

relationships. In 1989, Tompa first used hypergraphs to create a model for 

hypertext links on the Internet [5-3]. Later, Levene introduces the hypernode 

database to allow for semantic extensions to the standard semantic network: 

"a hypernode is a digraph structure with two built-in link types. The first 
link type is the arc representing a referential relationship and the 
second link type is the encapsulated label representing a part-of 
relationship. Furthermore, attributes allow us to give additional 
semantics to nodes."   [5-4] 

 
 

Notice that the hypernode database of Levene essentially represents two 

semantic links, the referential relationship and the part-of relationship. While 

this definition of a hypergraph allows for the addition of arbitrary information, 

as permitted in Levene's definition, the particular use of this structure is 

unspecified beyond the first two links. The structure thus operates like an 

extended semantic network without any organizing principle. Another use of 

hypergraphs is to allow for richer query structures than those provided by 

SQL on relational databases [5-5]. 

  

The essential feature introduced by the semantic hypergraph presented here 

is the distinction between the data-nature of knowledge as a collection of 

many different things and the language-nature of knowledge as a rich 

grammatic structure. By rearranging sentences to place the subject first, the 
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vector-edges of the hypergraph can be used to expressing statements, while 

the overall graph structure allows us to think of objects as we would in a 

traditional database. Thus the hypergraph, combined with a grammatic 

structure, provides the ability to represent rich semantics in the format of 

database.
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Figure 5.3. Two statements a) represented in a hypergraph with sentences 
embedded in the vector edges, and b) as transformational grammars 
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Natural language processing provides a number of structures to manipulate 

language. These include the conceptual graphs of Sowa [5-1], propositional 

grammars by Shapiro [5-6], and the generative grammars of Chomsky [5-8]. 

With generative grammars, noun and verb phrases are captured using 

cascading trees and each sentence is analyzed using a different parse tree. 

Using a semantic hypergraph we can maintain this grammar in each edge of 

the graph. In Figure 5.3, two sentences are represented both as generative 

grammars and as a single hypergraph with two edges. The type of grammar 

used here is a Phrase Structure Grammar [5-8]. Notice that while parse trees 

provide a solution to resolving word syntax, the hypergraph allows us to 

combine multiple statements to provide a network of relationships. The 

hypergraph thus operates as both a database and a language framework. 

 

The language structure is contained within, subsumed, in the larger structure 

of the database graph. The vertices retain the quality of being objects of the 

database while the edges express statements about these objects. There is 

still an issue with word order as the parse tree of a generative grammar 

represent more structure than the vector-set is able to express in a single 

edge. A phrase structure grammar is equivalent to regular grammar [5-8], 

which is computable by a finite state automaton and able to produce anything 

that might be represented in a tree. Syntactic rules, such as parenthesis, 

must be introduced to flatten these structures into an edge-vector. In addition, 
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the phrase structure grammar will be found to have certain limitations with 

more complex examples. Consider the statement: "Mary thought that John 

might not find her in their game". This example contains two second order 

frames ("Mary's thought" and "their game"), and one negated modal 

statement ("John might not"). To express more complex grammatic 

statements, additional syntax must be introduced. This is overcome using 

layered grammar patterns which will be present below. 

 

As Gyssens demonstrate [5-9], each vertex in a graph database can also 

store an image, a sound, a date or an external file. This allows the system to 

maintain multimedia data in addition to written statements. In the Quanta 

prototype this is accomplished by having nodes that refer to image files on 

disk. We could also permit programming structures, i.e. C++ objects, to be the 

object of a sentence, thus allowing the hypergraph network to refer to 

algorithms rather than just words (Figure 5.4). By using a unique naming 

scheme for objects, these algorithms could be incorporated directly into the 

semantic network or serialized in a separate disk file. 
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Quanta can still be thought of conceptually as a database - of objects - but 

with complex relationships between. This database is a hypergraph of 

linguistic structures, but a database first since the goal is to create a general 

knowledge framework rather than a natural language parser. 

 

The study of knowledge representation has a rich history as an exploration of 

expressiveness. More recently, it has been observed that the expressive 

power of different database systems has a direct correlation with the 

expressive power of various formal languages [5-10]. The exploration of 

complexity is an on going investigation that will not be elaborated here. 

However, some interesting observations can be made. First, we are just now 

beginning to see database systems that represent compound knowledge 

(multiple statements) with the same expressive complexity of natural 

Figure 5.4. Hypergraph network with algorithms to represent a) two paintings by Leonardo 
Da Vinci, b) external associated digital images, and c) code to process these images. 



131 

language. Secondly, there has historically been little emphasis placed on 

merging graph structures for multiple statements, as used in knowledge 

representation, with graph structures for single statements, as used in AI.  We 

can expect this will change. 

 

Each of these database systems offers increased power and flexibility over 

less expressive ones, yet there is still a great deal of flexibility in the design of 

a system at the same level of formal complexity. The number of possible 

designs for hypergraph-based knowledge systems is large. Thus, we must 

remember that while all cars have a similar complexity their specific design is 

what determines individual performance and usability. A map of the 

expressiveness of databases and formal languages in shown in Figure 5.5. 

 

It should be noted that the use of phrase structure grammars places certain 

restrictions on flexibility. Quanta is not capable of the expressive complexity 

of existential or conceptual graphs in that it cannot directly express universal 

and existential operators. Quanta does not presently implement full first order 

logic. However, its strength is the conceptual connection it forms between 

databases and language. With these foundations, it should be possible in the 

future to extend the hypergraph to implement first and second order logic. 
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Figure 5.5. Overview of complexity in databases and formal languages. 
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5.2.  Emergent Objects 

 

Formally, an object in Quanta is a defined as follows: 

 
 Object  Def. A node combined with the outgoing edge-sentences 
   of that node in which the node appears as the subject of  

the edge-sentence. 
 

We can see that this definition holds for Figure 5.2 above. Every edge-

sentence leaving the Turing node has the subject Turing as its first word. 

Informally, we can say the "Turing" concept is defined by the direct 

relationships between it and knowledge statements that connect it to other 

concepts.  

 

The insertion of a sentence into the hypergraph requires a reorganization so 

that the structure of the graph is maintained. For performance reasons, it is 

beneficial if the subject node always appear first in the sentence. That way we 

can easily identify which edge-sentences apply to a particular object. 

However, in many cases the subject appears in the middle of the sentence. 

Consider the following statement and its generative grammar tree, Figure 5.6. 
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Here, the subject is "man" yet it is enclosed in the noun phrase "the tall man". 

We can simplify this situation, however, by observing that unspecified objects 

typically never appear in a database: "The man was born in 1962" could be 

any man. Specifically, we wish to know which man: 

The tall man named John was born in 1962 

 

Placing the subject first allows the sentences to be more easily grouped for 

performance reasons. This is done by simply rearranging the sentence: 

  John is a tall man who was born in 1962. 

 

Figure 5.6. Generative grammar used to parse the sentence: 
"The tall man was born in 1962".  
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Finally, to take full advantage of the system we would want to represent 

"birth", "tall" and "men" as separate concepts by transforming complex 

statements into several simpler ones as we have done earlier. We also add 

the existential relationship to define precisely what John is (a person). 

 John is a person. 

 John is tall. 

John is male. 

 John was born in 1962. 

 

This may at first seem redundant since the word John is repeated four times. 

However, this will be addressed with compression in how the data is actually 

stored. The first sentence is an existential statement of what John is. Being 

tall and male are additional properties associated with John, while his birth in 

1962 is a event in John's life. 

  

After constructing a moderately large set of statements in this way we can 

observe this restructuring of language causes certain patterns to emerge. For 

example, after simplification, there will be a sentence with the exact form "X is 

a person" for every person in the database. These patterns will be examined 

more careful in the next section. 
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5.3.  Patterns 

 

A pattern, in general, is the observation of structure in randomness. In this 

context it is the observation of patterns of repetitive relationships in 

databases. There are many kinds of linguistic patterns. Three examples are 

"a person is an organism", "a river is a form of water" and "Spot is a cat". The 

first is a pattern of identity, the second a pattern of form, and the third an 

instance. Much like programming patterns are used to construct software [5-

11], linguistic patterns can be used to build knowledge relationships. Let us 

consider a database constructed from the following sentences: 

 
Beethoven was a German composer born in Bonn. He wrote his Fifth 
Symphony in 1804 after moving to Vienna, Austria. Bach was also a 
German composer born in Eisenach and wrote the Brandenburg 
concertos. Mozart, an Austrian composer, was born in Salzburg and 
wrote his Fifth Symphony in 1765. 

 

Rearranging statements according to the rules in the previous section, we can 

observe the identity-pattern at work in this network in Figure 5.7. Nodes that 

represent people have certain common relationships with other things. People 

have a place and date of birth. People produce creative works. People exist 

at a particular location. This object pattern is very similar to a class in 

programming or a schema in a relational database. There are some important 

differences, however. 
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Figure 5.7. Semantic hypergraph for statements about three different composers. The  sub-graph that 
represents a pattern for people is outlined. 
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With relational database schema and programming classes it is necessary to 

instantiate every member of the class. In addition, indices and pointers are 

needed to refer to the same concept. Notice that the node for German 

descent is only created once, so the system knows that Beethoven and Bach 

have the same descent. Referencing is built into Quanta based on name. 

Also notice that Beethoven breaks the person-pattern with the addition of 

information regarding his relocation to Vienna in 1804. Patterns, unlike 

schema, are thus flexible templates for generating a new set of nodes. 

 

It is also possible to add new people to the database without using a pattern 

at all. The minimum required is a sentence of the form: X is a person. Finally, 

if one wishes to extend the concept of person to include "occupation" in 

Figure 5.7, it is not necessary to add this to existing instances of person. The 

hypergraph allows for a much greater degree of flexibility than relational and 

object-oriented databases. 

  

In a relational database a schema is separate from its records and is normally 

constructed before filling the database. However, due to the grammatic 

flexibility of the hypergraph, we can store the pattern in the database along 

with the data itself while also distinguishing it from that data (see Figure 5.7). 

This allows us to create new patterns and modify them for any object without 

refactoring the database.  
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5.3. Grammatic Layers 

 

Where there are patterns in the relationship between objects there are also 

patterns in the sentences themselves. Sentences that denote existence, such 

as "Beethoven is a person" and "Hydrogen is an element", have the form: 

X is a Y 

Sentences that denote a property of an abstract object, such as "A person 

has a place of birth" and "An element has an atomic weight", have the form:

  X has Y 

There are also sentences that convey actions such as "Beethoven composed 

Symphony No. 5" and "Bohr developed a Theory of Atomic Structure." These 

have the form: 

 X verb Y  

There are in fact many different ways to categorize the types of sentences. 

Some sentences have many sub-phrases such as "Einstein developed the 

General Theory of Relativity from 1911 to 1915", which cannot be broken into 

simpler sentences since each phrase qualifies the development of the theory 

of relativity. This sentence follows the pattern: 

X verb Y preposition Z1 preposition Z2 ... preposition Z3 

 

The existential sentences of the form "X is a Y" are likely to be queried much 

more frequently than specific statements. For a biological database, the 
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phrase "X is a mammal" is likely to be visited a great number of times as the 

system determines the root class of various animals. Yet the phrase "The 

Baleen whale has a sieve-like upper jaw" is likely to be examined only when 

we are investigating that particular animal. 

 

One of the drawbacks of many current natural language parsers is that 

processing of simple sentences relies on the same algorithms that are used 

to process complex ones and therefore takes equivalent time despite their 

differences. In practice, it would be better to apply faster algorithms when the 

grammar is known ahead of time to be simpler.  

 

To benefit from this, Quanta uses a layered grammar in which simple 

sentences are given special status by the system. Physically, they are stored 

the same way as any other sentence - as a vector of words - but an extra byte 

of information is cached with each sentence to indicate its grammatic type. 

This allows a parser to operate very efficiently as it can quickly determine the 

type of sentence and then apply the appropriate grammatic parsing algorithm 

to the phrase. The grammar forms that are treated in this way are shown in 

Table 5.7.  
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Level Purpose Pattern Constraints 

1 Existential N V N where V = "is a" 

2 Qualified Existential N V N N where V = "is a"  

3 Properties N V N N .. where V = "has" 

4 Basic Statements N V N P N P .. arbitrary V 

5 General parsing N V CFG CFG = context-free 
grammar 

 
N = Noun, V = Verb, P = Preposition, CFG = Context-free Grammar 
 

 

Level one is a finite grammar and is the simplest to parse. In fact only three 

operations are needed to resolve the subject and object at this level: one to 

determine the grammar level, one to get the subject from position 1 and one 

to get the object from position 3. On the opposite end of the spectrum, level 

five allows for future expansion by providing space for general context-free 

grammar parsing. This would allow unrestricted statements in natural 

language that would be parsed using statistical methods. Additional syntax 

may be introduced in level five, using delimiters (such as parentheses), to 

provide more expressibility.  

Table 5.2. Quanta: Grammatic layers.  
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An important issue in parsing is the problem of disambiguation. This is solved 

by introducing a syntax for words with multiple meanings. A square bracket 

with a number is used to indicate the same word has multiple meanings. 

These are each stored as different nodes in the database: 

  bat [1]  A flying nocturnal animal similar to a rodent 

  bat [2]  A long, crafted stick used in the game baseball 

  bat [3]  The act of hitting a ball with a bat [2] 

 

Pragmatically, ambiguity resolution simply involves selecting a node from 

above. A search for the word "bat" retrieves the definitions above, from which 

the user can select a specific meaning. As a general principle in Quanta, all 

references must be disambiguated. Thus, disambiguation of natural language 

should occur before data is entered into Quanta. This allows the system to 

function as a database rather than as natural language processing system, 

which may be introduced as an extension. 

 

In practice, disambiguation can be difficult since the user may not know that 

other definitions of a word exist. Resolution in this case requires careful 

design of the user interface. When entering data, each entry of a word should 

also produce a search to determine which meaning is intended. Patterns can 

be used to help the user select the appropriate definition. 
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5.5. Logical Inference 

 

The structure of Quanta has been defined as a semantic hypergraph. But 

what are its operations? To enter this discussion, let us consider the following 

query: 

 What constitutes the field of physics?  

 

Several assumptions must be made. Of course, the answer is given relative 

to a database that has only limited knowledge of the field. Secondly, the word 

"constitutes" in this context is taken to mean anything that is either directly or 

remotely linked to the concept "physics". Finally, let us assume that 

disambiguation has already occurred so that "physics" represents the node 

for a subject area (def. #1) and not the observed motion of a body (def. #2). 

 

Consider a sample database that contains the following sentences: 

S(1) Einstein | developed | Theory of Relativity 
 S(2)  Heisenberg | developed | Uncertainty Principle 
 S(3)  Bohr | developed | Theory of the Atom 
 S(4)  Copernicus | developed | Sun-Centric Model of Solar System 
 S(5) Newton | influenced | Einstein 
 S(6) Bohr | contributed to | Physics 
 S(7) Uncertainty Principle | is a | theory in | Physics 
 S(8) Theory of Atom | is a | theory in | Physics 
 S(9) Theory of Relativity | is a | theory in | Physics 
 
The vertices of the database are the words of these statements. The 

sentences its edges. 
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Informally, we would expect our question to be answered on the basis of 

relevance. The sentences directly connected to the term "physics" constitute 

its immediate members. Thus, sentences S(6), S(7), S(8) and S(9) give us: 

the first set of terms Bohr, Uncertainty Principle, Theory of Atom and Theory 

of Relativity since these statements contain the word physics. We can also 

consider the secondary connections whose distance is two sentences from 

the concept "physics". Sentences S(1), S(2), S(3) give us Einstein, 

Heisenberg and Bohr as they contain words from the first set. Finally, a 

tertiary relationship is sentence S(5), which links Newton to Einstein, Einstein 

to the Theory of Relativity, and the Theory of Relativity to Physics. Additional 

orders of distance can be defined in a similar way. This form of induction has 

a nice property that the scope of meaning can be incrementally expanded 

relative to the query. As with life, there is no real boundary to the question, 

and this form of inductions allows use to answer it incrementally. 

 

In artificial intelligence, this process is called the denotive operation, a form of 

procedural semantics that acts as a query on a graph [5-1]. While Sowa 

developed this for a conceptual graph, the denotive operator for a hypergraph 

is defined here using induction.  

Def. Primary relations: The primary relations, R1(C) of a hypergraph H  
for a concept C are the set of unique nodes N such that there exists 
a sentence S in which both N and C exists in S. 
 

R1(C) = { For all N, Exists S, s.t. N exists in S, and C exist in S } 
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 Def. N-ary relations: The n-distance relations, Rn(C) of a hypergraph H 
 for a concept C are the set of unique nodes N such that there exists 
 a sentence S in which N exists in S and there exists a second node M 

such that M exists in S and in Rn-1(C). 
 

Rn(C) = { For all N, Exists S, s.t. N exists in S, and  
Exists M, s.t. M exists in S and Rn-1(C) } 

 

This is the hypergraph equivalent to a sub-graph whose nodes are all a given 

path-length from the concept node C. Only the denotive operation will be 

defined here while other operations performed on conceptual graphs can be 

similarly constructed for semantic hypergraphs. 

 

How do we evaluate this denotive operator for a given concept C and a given 

depth n? At depth one, a naive algorithm would find R1 by scanning all 

sentences S to look for any matches to concept C just as a person scans the 

above table to locate sentences in which the word "physics" occurs. At depth 

two or more, the algorithm would examine all sentences to see if any concept 

M in the sentence S is also found in Rn-1.  If the database has size T, this 

naive implementation will have a running time for Rn equivalent to O(Tn). This 

means a database of one million nodes (106) would require 1018 operators 

just to find the nodes at level R3.  

 

Is there a way to improve this? To find all the books in a library related to 

physics we need not examine every one. Instead we can use a catalog. An 
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index for the word "physics" can be built as the sentences are added, 

resulting in the following: 

Physics S(7), S(8), S(9), S(10) 

 

Indexing allows us to find related concepts much more quickly. The index lists 

edges directly connected to the term. Thus we can find R1(Physics) in time 

O( C ), where C is the number of sentences connected to the concept.  

 

Of course, we must still scan all sentences to determine which concepts are 

in R2(Physics) because these sentences do not actually contain the word 

"physics". However, if we create an index for these nodes as well, then all 

search-type queries can be reduced to a localized search over the sentences 

directly connected to each node. 

  

The general solution we require is full indexing of every node. This would 

allow any direct query to be constant time and any higher order queries to be 

dependent only on sentences localized to the query concepts (rather than on 

all sentences in the database). The idea of full indexing could also be used in 

rule-based systems and to improve performance of other types of logical 

inference. 
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Full indexing is the foundation of the modern search engine for the world wide 

web [5-12]. All documents are scanned to create a large database of 

keywords and links. Every keyword then has an index of the documents it is 

found in. The primary difference here is that, unlike internet search engines, 

the keyword do not index web pages but individual sentences. Therefore, 

from the perspective of language, the granularity in the index is more detailed 

than that of a web-based search engine.  

 

One challenge with full indexing is that it requires significant storage space. 

However, a semantic hypergraph is perfectly suited to a compression scheme 

that will allow this: dictionary compression. We store each vertex literal 

uncompressed 2 along with a list of references to the sentences in which it is 

found. For each sentence we store the words as a list of references to 

vertices. These references take significantly less space than the actual words, 

which are now stored only once in the entire system. In addition, the 

references not only aid in compression but also provide a link to other 

concepts and any information they may provide. Table 5.3 shows how to 

model the previous example using full indexing with dictionary compression.  

 

 

                                                
2 For words we simply store the actual word, for images and sounds we store the external filename of 
the multimedia content which may be compressed, and for programmatic objects we store a 
serialization of the object with any pointers converted to hypergraph references. 
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Node Literal Index 
N1 is a  S7, S8, S9 
N2 developed S1, S2, S3, S4 
N3 theory in S7, S8, S9 
N4 Influenced S5 
N5 contributed to S6 
N6 Einstein S1, S5 
N7 Heisenberg S2 
N8 Bohr S3, S6 
N9 Copernicus S4 
N10 Newton S5 
N11 Theory of Relativity S1, S9 
N12 Uncertainty Principle S2, S7 
N13 Theory of the Atom S3, S8 
N14 Sun-Centric Model of the 

Solar System 
S4 

N15 Physics S6, S7, S8, S9 
     

Sent Word-Vector  Interpretation (Not stored) 
S1 N6, N2, N11 Einstein developed Theory of Relativity 
S2 N7, N2, N12 Heisenberg developed Uncertainty 

Principle 
S3 N8, N2, N13 Bohr developed Theory of the Atom 
S4 N9, N2, N14 Copernicus developed Sun-Centric Model 

of the Solar System 
S5 N10, N4, N6 Newton influenced Einstein 
S6 N8, N5, N15 Bohr contributed to Physics 
S7 N12, N1, N3, N15 Uncertainty Principle is a theory in Physics 
S8 N13, N1, N3, N15 Theory of Atom is a theory in Physics 
S9 N11, N1, N3, N15 Theory of Relativity is a theory in Physics 

 

While full indexing allows us to easily locate the sentences associated with a 

node, it does not allow us to locate a node quickly given its name. Consider a 

search in the above data for the concept "physics". If we can locate node N15 

we can easily examine its index list to identify the relevant sentences, but how 

Table 5.3. Hypergraph model of nine sentences with full 
indexing and dictionary compression 
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do we find N15 given its name? Keep in mind the nodes N need not be in 

alphabetical order. The solution is to use a height-balanced search tree, 

which provides O ( log(n) ) time for both insertion and searching of nodes. 

 

By combining full indexing, dictionary compression and a height-balanced 

search trees to build semantic hypergraphs it is possible to construct efficient 

and compact representations of complex knowledge. Full indexing allows us 

to perform semantic operations efficiently, dictionary compression lets us 

implement full indexing with little overhead in storage, and search trees 

should allow us to locate nodes efficiently given their names. 

 

5.6. Storage & Performance 

 

While semantic operations have been examined in the previous section, there 

are several storage issues that have not yet been addressed: 

 • As new nodes are added, the entire database must expand 

 • As new sentences are added, node index lists must also expand 

 • Node data itself must be permitted to change or expand 

 

Ideally, we would like all of the features of the hypergraph to be flexible. New  

and changing data should not burden the system. Practically we must store 

two lists: 1) The list of vertices and their indices and 2) The list of sentences. 
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In addition, we must also maintain a height-balanced tree for alphabetic 

indexing. Each of these lists must be permitted to change as needed.  

 

To solve these problems, Quanta implements a hierarchical file system with 

heap-based node allocation. The hierarchical file system separates the 

database structure into vertices and edges while the heap-based allocation 

allows individual nodes and sentences to be reallocated as needed. The file 

system allows for three different types of files: 1) Data files, 2) Node files, and 

3) a Meta file. The meta file stores allocation information about the other files. 

It is essentially a directory of the other files (including itself). Data files contain 

raw data without labeling of data blocks while node files keep track of 

individual pieces of data.  

 

These are not literal files at the operating system level. They are referred to 

as files, however, because they serve a similar function. Rather the custom 

software of Quanta stores all of these "files" in a single physical disk file on 

the hard drive of the native operating system. One reason for this is the 

expectation that the database may become quite large. The prototype 

database contains roughly 8000 vertices and 12,000 sentences. While not 

significantly large, no limit has been reached yet. In the future, it should be 

possible in theory to split the hypergraph into multiple files or even distribute it 

among machines provided the vertex indices are properly maintained. 
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Only the height-balanced tree is kept in physical memory. This was done for 

performance reasons and also ease of implementation. Keeping the search 

tree in memory is not ideal as this will present limits when the database 

grows. Future designs would incorporate the height-balanced search into the 

data file on disk so that memory can be utilized for temporary visualization 

structures. 

 

Table 5.4. summarize the various data storage layers and algorithms used in 

the Quanta prototype.  

 

 

Layer  Problem Solution 

Semantic Network Knowledge database
  

Hypergraph network 

Graph Storage Query performance Full Indexing 

 Full index storage Dictionary compression 

Node Storage  Node search and  
retrieval 

Height-Balanced Tree 

 Node expansion and  
addition  

Heap-Based Allocation 

File Storage Vertex and Edge  
Storage 

Hierarchical File System 

     

 

 

Table 5.4. Quanta: Data storage layers and algorithms 
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The investigation into mathematical definitions of logical operations on the 

hypergraph, and the performance issues on network inference is superficial 

here. Other inference operations include modus ponens, universal 

generalization, universal induction, and deductive inference. While the 

performance of these algorithms is not investigated, the use of full indexing 

should eliminate any global searches of the graph. Just as various amounts of 

effort are needed for people to answer questions related to more abstract 

concepts, the nodes traversed will be limited to subsets defined by a specific 

query. Higher degree nodes will require more processing than lower degree 

ones, but no cases should all nodes be traversed.  

 

The Quanta system was developed as a prototype to test the feasibility of 

hypergraphs to store grammatic structures. This is used, in the following 

chapters, to build an interdisciplinary ontology and a set of novel 

visualizations of semantic data. A more thorough investigation of a long-term 

strategy for Quanta would involve a distributed prototype incorporating some 

of the additional features mentioned above (e.g. disk-based search trees), 

and theoretical and empirical measurements of scalability and performance. 

More details on the implementation of Quanta are described in chapter nine. 
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5.7. Representational Layers 

 

Logically speaking, language may be thought of as a set of ideas that build 

from words to sentences, sentences to objects, objects to patterns, patterns 

to instances, and instances to classs. This sequence defines the 

representational layers of Quanta (Figure 5.8). 

 

 

 

 

As with any system there are limitations. Current limitations of Quanta have to 

do with the expressive power of sentences which are restricted to phrase 

structure grammars. A design-driven approach to this is taken by construct a 

formalized English in grammatical layers, so that simple grammars can be 

Figure 5.8. Patterns of knowledge representation at different scales. The 
layers demonstrate increasing complexity in knowledge representation. 
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operated on efficiently while more complex grammars can be developed in 

the future as needed. 

 

One key benefits of the semantic hypergraph is that any object can be 

created, extended, classified and elaborated indefinitely. Patterns can be 

used to create databases of objects, while the patterns themselves can be 

created and expanded for any concept. As with semi-structured databases, 

there is no formal distinction between schema and data. Classifications can 

be built into the network as well. Objects can be instances of a class, or 

belong to multiple classifications simultaneously as we will see in the next 

chapter (Ontology & Classification). The system can thus be used to 

represent many different kinds of knowledge across multiple disciplines. 

 

Similarly, layered grammars allow the concept of grammatic complexity to be 

efficiently expanded as needed. Basic relationships, such as identity, are 

processed with fast, fixed alogrithms. More complex grammars can be 

embedded in the graph edges as needed. Thus, the grammatic power of 

hypergraph databases is open to future development. Indexed, dictionary 

compressed hypergraphs operate on knowledge at a lower level than current 

textual approaches to metadata on the semantic web, thus affording the 

benefits of database performance and stability as well as semantic flexibility. 

  


