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Figure 1: Volume rendering of a 1 million particle Smoothed Particle Hydrodynamic (SPH) time series simulation with the density field
resampled to a 10243 sparse GVDB volume, rendered with a) ray sampling with 1 ray/pixel and a custom transfer function at 35 fps, b)
multiple scattering and soft shadows with 48 rays/pixel at 1 fps, and c) visualization of empty space skipping showing level-1 bricks.

Abstract
Simulation and rendering of sparse volumetric data have different constraints and solutions depending on the application area.
Generating precise simulations and understanding very large data are problems in scientific visualization, whereas convincing
simulations and realistic visuals are challenges in motion pictures. Both require volumes with dynamic topology, very large
domains, and efficient high quality rendering. We present the GPU voxel database structure, GVDB, based on the voxel database
topology of Museth [Mus13], as a method for efficient GPU-based compute and raytracing on a sparse hierarchy of grids.
GVDB introduces an indexed memory pooling design for dynamic topology, and a novel hierarchical traversal for efficient
raytracing on the GPU. Examples are provided for ray sampling of volumetric data, rendering of isosurfaces with multiple
scattering, and raytracing of level sets. We demonstrate that GVDB can give large performance improvements over CPU
methods with identical quality.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Raytracing

1. Introduction

The need for sparse volume data structures to represent uncom-
pressed scalar fields over large domains is driven by the physical
sciences and the motion picture industry, where time-varying sim-
ulations require volumetric operations with dynamic topology. An
ideal data structure would provide features for efficient simulation,
dynamic topological changes, sparse compression, fast raytracing

and very large addressable spaces. While existing methods excel
in a particular area, none are able to combine these advantages to
address all goals. We introduce GPU voxel databases, GVDB, as a
novel data structure based on a convergent approach that integrates
the key features of several techniques to meet these goals while also
presenting an efficient framework for simulation and rendering on
the GPU.
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This work considers the efficient raytracing of dynamic sparse
volumes. Many modern data structures are able to achieve effi-
cient rendering of sparse volumes on the GPU. In particular, N3-
trees and tilemaps (or brickmaps) have been found to have branch
and traversal characteristics suitable to real time rendering of static
data. However, Crassin points out that "animation is a big problem
for volume data [rendering]." [CNLE09], which Museth works to
address with OpenVDB [Mus13]. While OpenVDB is unique in its
consideration of dynamic simulation on "virtually infinite" sparse
domains, it achieves these goals through per-voxel iterators. These
iterators cache tree traversal pathways for each voxel, which is well
suited to multi-core CPU architectures, but not ideal for mono-
lithic kernel execution on single-instruction multiple data (SIMT)
architectures since neighbors at non-boundary voxels do not require
traversal, leaving many threads idle. There are few approaches that
provide the flexibility for very large scale simulations with dynamic
topology and efficient kernel execution on modern GPUs.

A key inspiration for the present work is the voxel database struc-
ture (VDB), which has found extensive use in motion pictures by
addressing several points [Mus13]. The VDB structure focuses on
the challenges of simulation with the observation that many de-
sirable tasks require both efficient stencil operations and dynamic
changes in topology. These include, for example, algorithms for di-
lation, flood-filling, advection and diffusion. GVDB does not yet
implement simulation but our design anticipates this application.
Here we consider raytracing of GVDB data structures with dy-
namic changes. We approach this problem with a novel memory
pooling design that addresses the allocation and deallocation of
nodes while retaining the multi-level topology of the VDB struc-
ture for large domain simulations.

2. Contributions

GVDB considers the problem of direct single-pass volume raytrac-
ing of large, potentially time-varying sparse data to support scatter-
ing in a fully integrated raytracing environment. Key contributions
of this work are:

• A sparse hierarchical structure for scalar volumetric data
• An efficient memory pooling architecture for dynamic changes

in topology
• A novel hierarchical short-stack 3DDDA raytracing algorithm

entirely on the GPU
• Rendering of ray-sampled volume data with transfer functions,

raytracing of isosurfaces, and rendering of level set surfaces
• Major performance improvements over existing methods with

identical quality results
• Integration with generic raytracing frameworks such as NVIDIA

OptiX for multiple scattering and soft shadows

3. Related Work

Raytracing of volume data is an extensively studied problem. A
recent survey of this topic for scientific visualization can be found
in Beyer et al. [BHP14], with mention of current GPU techniques.
This source also covers recent multi-resolution data structures for
sparse data.

Dense volumes can be directly stored and raytraced in 3D texture

memory [CN94, CCF94]. This method forms the basis of ray sam-
pling of bricks in sparse methods. Adaptive texture maps by Kraus
et al. [KE02] is possibly the first sparse GPU-based volume tech-
nique to introduce the separation of index table and a brick texture
pool. This approach is employed by others [CNLE09,HBJP12] and
by GVDB to store brick data in texture atlases.

Octrees are used as a multi-level sparse volume data structure
in several frameworks [GMIG08, CNLE09, KW03]. Krüeger et al.
[KW03] use a shallow octree encoded in a hardware texture for
empty space skipping. Boada et al. [BNS01] construct octrees to
represent level of detail, a common technique for rendering low res-
olution approximations for non-resident bricks in out-of-core ren-
derers and to approximate voxel antialiasing. We consider level of
detail as an extension of our current goals, while our primary ef-
fort is to achieve real time rendering of sparse volumes with com-
plete brick data on the GPU. Gobbetti et al. [GMIG08] introduces a
stackless approach to raycasting octrees to reduce memory accesses
that will be revisited later.

Figure 2: Basic structure of a VDB Tree. The node bitmask in-
dicates which children nodes contain data and are labeled active
(bit set to 1). Pointers to the children are stored in the list of active
children. A ray traverses the node volume using a 3D differential
analyzer (DDA) stepping scheme, touching some active children.
Others may be active but not touched by the ray (#1). Once an ac-
tive child is found, the ray may trace into the child node for more
detailed data.

Hierarchical multi-level grids are a recent approach that offer
shallow tree depths, large domain sizes, and brick-level sampling at
the cost of increased complexity. Efficient GPU raytracing of multi-
level grids is an ongoing challenge. Crassin’s work on GigaVoxels
presents an N3-tree with level of detail achieved via MIP-mapped
3D bricks at the leaves [CNL08]. Raytracing is accomplished with
the kd-restart algorithm to resume ray sampling at brick bound-
aries [HSHH07]. Hadwiger et al. [HBJP12] traces a hierarchical
grid by performing brick lookup at each sample while Fogal per-
forms empty space lookup per brick on an index table [FSK13].
We notice that the latter technique is similar to the hierarchical
3D differential analyzer for voxel traversal (H3DDDA) offered by
Museth [Mus14] on the CPU, whereby the H3DDDA skips empty
space until a brick is found which then initiates ray sampling (Fig-
ure 2). This paper examines the adoption of H3DDDA on the GPU.
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Figure 3: The GVDB Data Structure uses two memory pools to store a) node data and bitmasks in pool set P0 and b) dynamic lists of
children in pool set P1. Nodes are 40 byte headers which contain spatial Position of the node, indices to the Parent and Children lists in other
pools, and Values to reference locations in a texture atlas of bricks containing voxels. Bitmasks identify which child nodes are active and bit
counting locates a specific child. Multiple atlases may be used for additional data channels or for level of detail reductions at higher levels.

Recent work with sparse volumes allows for efficient rendering
of large meshes and point clouds. Kämpe et al. [KSA13] [KRB∗16]
recognize that meshes can be efficiently compressed as a directed
acyclic graph (DAG) of binary voxels, both in terms of bit-level
streaming and through identification of similar bricks, with recent
work on temporal meshes. Villanueva et al. [VMG16] extends this
by locating graph symmetries. These methods are able to render
64K3 scenes on GPU in real time, with less than 0.2 bits/voxel.
Reichl et al. [RCSW14] apply binary voxel hashing to accelerate
the rendering of point-based fluids. For large scale meshes, sparse
voxel octrees are combined with hybrid rasterization to achieve de-
tailed and scalable rendering by Reich et al [RCBW], using or-
thogonal fragment buffers, and by Chajdas et al. [CRW14], using
voxel octrees. These methods rely on sparse binary voxels to accel-
erate render of meshes and point clouds, whereas we wish to render
IEEE floating-point scalar data from original grid-based volumet-
ric sources. We also avoid compression, which would limit perfor-
mance of dynamic volumes for in situ simulation and rendering
applications.

In addition to volumetric ray sampling we also raytrace isosur-
faces and level sets on scalar fields. The data structures of Niess-
ner et al. [NZIS13] are relevant as voxel hashing is used to encode
signed distance functions (SDF) rather than binary volumes to re-
construct 3D meshes from range data. However, rendering of sparse
voxel distance fields is not considered by Niessner as surfaces are
extracted for mesh reconstruction. For rendering, Hadwiger et al.
[HSS∗05] introduces complex shaders on isosurfaces of volumetric
data, and Knoll et al. [KWH09] extend this to multi-resolution iso-
surface rendering. Similarly, the original goal of Museth [Mus13]
was to process and render level set surfaces. These tasks are directly
applicable to our goals as we wish to render any surface residing on
scalar fields.

4. The GVDB Data Structure

4.1. Design

GVDB is a novel data structure for efficient simulation, render-
ing, and storage of large, uncompressed sparse volumes. The voxel
database suffix, VDB, is appropriate since GVDB expresses an
identical topological layout in virtual address space as OpenVDB.
That is, GVDB retains several similarities to the B+ trees men-
tioned by Museth [Mus13]. We notice that many advances in mod-
ern volumetric GPU-based raytracers are important to consider and
develop a novel data structure with a ground up implementation
meeting these goals.

Conceptually we define the tree topology in a similar way to
Museth [Mus13]. A VDB configuration is a vector which identi-
fies the log2 resolution of each grid level. For example, the <5,4,3>
VDB configuration constructs a 3-level tree with (25)3 = 323 top
level divisions, (24)3 = 163 mid level divisions, and leaf bricks con-
taining (23)3 = 83 voxels. An additional level is added to provide
a singular root node. Consistent with VDB nomenclature, level 0
is the last value in the vector and defines the leaf level, which al-
lows the tree to arbitrarily increase in depth. A benefit of the VDB
specification is that it subsumes several other representations. For
example, an <N,N,N,..N> tree defines a N-ary tree, and a config-
uration of the form <1,1,1,1,1> defines an octree, while a <9,4>
tree defines a two-level hierarchy with a 5123 index atlas and 163

bricks.

The design of GVDB consists of a set of nodes at multiple levels
in a grid hierarchy, in which each node contains a bitmask and a
compacted list of pointers to children. The child list only stores ref-
erences to active children providing the primary memory savings of
VDB. Given a spatial location, if that bit is active, the specific child
is located by efficient 64-bit counting on the bitmask to determine
the index in the child list. While this slightly increases the cost of
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lookups it is only performed when a bit is found to be active and
saves considerable space compared to indirection tables or octrees
with full pointers.

While the concept of a bitmask and child pointers are retained,
Figure 2, GVDB has many important design differences from
OpenVDB. GVDB uses a single node type instead of the root, in-
terior and leaf nodes of OpenVDB since these have similar func-
tions. For example, leaf nodes in GVDB are interior nodes with
active brick values and with an empty child list. Secondly, to pro-
vide a convenient way to map CPU and GPU topologies, GVDB
introduces integer indexing and a memory allocator to seamlessly
transport data between these without address translation. Finally,
brick data are stored in GVDB with a 3D texture atlas for efficient
hardware trilinear filtering and texture cache access.

4.2. Representation and Layout

The primary contribution of GVDB is an efficient memory layout
and data representation for sparse hierarchical grids with dynamic
topology. To allow efficient changes in topology the addition and
removal of nodes must be fast. Since the number of nodes may ex-
ceed 500k for large volumes heap allocation is impractical, which
strongly suggests memory pooling. However there are two chal-
lenges to memory pooling of VDB nodes. First, the number of vox-
els can vary on each level, and thus the bitmasks change in size, and
second, the list of children for each node can change dynamically.

Memory pooling is achieved with the introduction of two pools
for each level of the tree, Figure 3. We notice that while each level
has a different resolution, all nodes at a particular level are divided
similarly. Thus the bitmasks have identical width for a given level
of the tree. We define the first pool group P0i as a set of pools that
exist for tree level i, and have width W0i = N + res(i)3/8, where N
is a fixed width for common node attributes and res(i) is the voxel
resolution for that level. For the leaf nodes at level 0, there is no
child list so we set W0i = N, keeping in mind that res(0) defines
the voxel resolution of a brick in a texture atlas. In this way, each
level compactly stores a set of nodes and bitmasks for a given VDB
configuration.

A second pool group is needed to store the child lists, and is
defined as a set of pools P1i at each tree level i, with a width con-
taining a list of integer indices of size W1i = Kres(i)3, where K is a
fraction of the maximum number of children. When the child list of
a given node overflows, we either dynamically reallocate that pool
or move the child list to a larger pool. In practice, we found that
the VDB topology is already so compact - requiring less than 1%
(average 5MB) of memory compared to the atlas - that K can be set
to half or one third of the maximum.

The size of both P0 and P1 pools, the maximum number of nodes
they can contain, are initialized with numbers that diminish with
level i. When the number of bricks is static and known a priori,
we can exactly initialize P00 and P10. The higher level pools are
initialized at progressively smaller sizes. As references to and from
other pools do not change, dynamic reallocation of a specific pool
can happen quickly and infrequently.

Given these memory pools, and a brick atlas containing voxel

data, the node data is a fixed structure placed in P0i and containing
the following:

Node Attrib Bytes Definition
Level 1 Level of the node
Position 12 Position in index space
Value 12 Brick position in texture atlas
Parent 4 Index in P0i+1 of the parent
Child List 8 Index in P1i of the children
Start of mask res(i)3/8 Bitmask for the node

The node header size (N) is padded to 40 bytes. The largest pool
is always the P00 leaf pool (but has no child lists) so the topology
size of a large data set, containing 500k leaf bricks, would aver-
age around 20MB. Compare this to a two-level hierarchy using an
indirection table with size 5123 which requires around 500MB as-
suming 4 byte pointers, or to an octree which would need at least
seven levels (86 < 500k < 87).

Figure 4: Raytracing on a hierarchy of grids. a) The ray origin
may lie inside the tree, so traversal b) starts at the entry point of
the bounding box where c) the node bit is empty, stepping the DDA
forward and then d) stepping down the tree and restarting the DDA
until the ray e) enters a brick and begins sampling, eventually f)
stepping to the next sibling brick, and finally g) stepping out, or h)
re-entering the volume again.

The Value attribute is present in all nodes and references a po-
sition in the texture atlas for that level. Presently, we only use the
level 0 values and a single brick atlas but anticipate that the value
index provides an easy way to incorporate level of detail with the
addition of downsampled atlases at other levels. We also store an
inverse mapping from texture atlas positions to index space for ef-
ficient access to spatially neighboring bricks.

The GVDB data structure has several advantages. The entire
topology is given by these 2L pools, where L is the maximum tree
depth, and can be allocated or transferred to GPU with one call
per pool. Additionally, we introduce an accelerated file storage for-
mat which writes these pools directly to disk with no translation
required. Texture atlases are also written to and read from this file
format. For static data that fits in GPU memory this allows sparse
volumes to be directly loaded from disk to host mem to GPU mem
without a node traversal.
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Algorithm 1 Raytracing GVDB Volumes
1: function RAYCASTGVDB(orig, dir, hit, norm)
2: nodeid[lev]← root
3: node← nodeid[lev]
4: t, tExit[lev]← intersectBox(nodeid[lev])
5: PREPARE_DDA . start dda at root
6: p← local position in brick from DDA
7: for p > 0 and p < res[lev] do
8: bit← (p.z∗ res[lev]+ p.y)∗ res[lev]+ p.x
9: if isBitActive (node, bit) then

10: lev−− . step down tree
11: nodeid[lev]← getChild(node,bit)
12: node← nodeid[lev]
13: if lev = 0 then . at brick level
14: hit,norm← raycastBrick(node,orig,dir)
15: ST EP_DDA . leave brick and continue
16: else
17: tExit[lev]← EXIT _DDA
18: PREPARE_DDA . restart dda on entry
19: end if
20: else
21: ST EP_DDA . bit empty, step dda
22: end if
23: while t >= tExit[lev] and lev <= toplevel do
24: lev++ . step up tree
25: node← getNode(nodeid[lev])
26: PREPARE_DDA . restart dda at parent
27: end while
28: end for
29: end function

4.3. Apron Voxels

When raytracing volumes with trilinear sample interpolation, using
gradients in isosurface rendering, or applying compute algorithms
that rely on a neighbor stencil, a local neighborhood of voxels is re-
quired. This can be problematic at brick boundaries and a common
solution is the inclusion of apron voxels (or ghost voxels) which is
now standard in many brick-based volume renderers [ILC10], with
an analysis given in [FSK13]. OpenVDB does not implement apron
voxels but instead provides per-voxel cache efficient tree iterators
to identify voxels in neighboring bricks. This strategy does not map
well to GPU parallelism where we would like interior voxels of a
brick to perform the same amount of work per thread as boundary
voxels.

GVDB implements apron voxels by increasing the resolution of
the texture atlas to provide for their storage. This occurs indepen-
dently of the topology and involves a change in the value index into
the atlas, a function which is built into the brick allocator. GVDB
lets the user specify zero or more apron cells during atlas construc-
tion while raytracing operations are designed for a specific number.
A special compute kernel automatically populates these voxels on-
the-fly from a previous time step, similar to Isenburg et al. [ILC10],
by performing a neighbor lookup only on the apron voxels using the
inverse atlas-to-world mapping described earlier.

5. Raytracing

Our raytracing algorithm is based on observing several constraints.
A ray must be able to skip empty space laterally among siblings,
jump up and down tree levels, enter and sample bricks, and pos-
sibly re-enter the volume multiple times (Figure 4). Hadwiger et
al. [HBJP12] resample at each time step, making use of a cache of
the current page table hierarchy to improve performance. This has
the advantage of simplified ray stepping but avoids gains from large
DDA steps. Skipping along DDA node boundaries is achieved by
Crassin as the kd-restart algorithm traverses entry and exit points
while using a top-down traversal on exits [CNLE09]. Museth ac-
complishes full hierarchical 3DDDA traversal on the CPU with
smart iterators [Mus14].

We examine the kd-restart algorithm of Foley to develop our own
short stack raytracer as many of the concepts there can be applied to
a hierarchy of grids [FS05]. The key to kd-restart is to save the exit
point tMax of the current node and advance to that point, restarting
tree traversal from the root on each exit. This is suitable in rapidly
divided trees such as kd-trees and octrees since there are only two
sibling. However, in the spatially subdivided nodes of VDB grids
we wish to avoid a kd-restart at each entry and exit of a voxel on a
given level.

The DDA traversal of GVDB is based on a branchless version of
the 3DDDA of Amanatides with the addition of mask and compar-
ison operators instead of branch conditionals for stepping [AW87].
Similar to Museth we implement a hierarchical 3DDDA which
steps up and down the tree when an active child is found [Mus14].
Simply unrolling each tree level with multiple sets of DDA vari-
ables is ineffective as kernel register pressure becomes a limiting
factor. Instead we find that reinitializing the DDA allows us to use
only one set of DDA variables at all tree levels.

When traversing down the tree we can restart the DDA at the
child node with the current t. However, to step up and possibly
re-entry a lower level we must save the exit points during traver-
sal. Thus we maintain a short stack of exit points during step
down traversal and restore these on step up. Our final algorithm,
shown in Algorithm 1, is most similar to the short-stack method
of Horn [HSHH07] for kd-trees, combined with a fast branchless
3DDDA, and bitmask queries to locate active children in the VDB
data structure. The algorithm efficiently checks active bits stored in
linear memory during DDA steps and never revisits the tree root
until the hierarchical DDA traversal finishes. Only when entering
a brick is texture memory sampled to accumulate the current pixel
color.

6. Results

We examine the performance of GVDB in several ways. First, we
implement a similar renderer in OpenVDB with identical output to
GVDB to compare the performance of GPU and CPU multi-core
rendering. Second, we look at rendering performance and sparse
occupancy from the perspective of brick and data size. Finally, we
examine the behavior of GVDB as a volume raytracing engine
when integrated into generic frameworks for multiple scattering
and global illumination.
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Figure 5: Comparison of raysampled volumes rendered in GVDB
(left) and OpenVDB (right). The bunny volume renders at 34
ms/frame (29 fps) in GVDB and 2235 ms/frame in OpenVDB. The
explosion renders at 23 ms/frame (42 fps) in GVDB and 1764
ms/frame in OpenVDB.

Data Set Data Res
Occup. GVDB OpenVDB

(%) (ms) 1 core 4 core
Explosion 280 39% 23.4 6210 1764
Bunny Cld 584 22% 34.3 4613 2235
Armadillo 1528 2.7% 43.6 1212 281
Bunny 632 7.5% 11.6 845 166
Buddha 1312 9.4% 27.9 723 148

Table 1: Benchmark results for scenes from OpenVDB loaded
into GVDB. All scene are in the <5,4,3> configuration found in
the standard OpenVDB package. Notice that level set scenes have
significantly lower occupancy as they encode only a narrow band.
Data res gives the largest voxel dimension. GVDB measured on a
Quadro M6000 and OpenVDB on a 4-core Intel i7-3770K. Scenes
are available at http://openvdb.org

6.1. Performance Comparisons

The raytracing performance of GVDB was measured against mul-
ticore CPU-based OpenVDB for standard benchmark scenes. All
GPU tests were performed on a Quadro M6000 with 12GB, and
CPU tests with a 4-core Intel i7-3770K 3.5ghz with 16GB. Results
in Table 1 show that GVDB runs on average 100x-200x faster than
single core and 60x faster than 4-core for raysampled volumes. For
level sets surfaces the delta is less and GVDB runs 25x-30x faster
than single core and 5x-6x faster than 4-core. Renderings in Figure
5 and 6 show that the output is essentially identical in all cases.

Rendering performance was also tested with respect to data and
brick size. Using the values in Table 2, we compare these factors in

Figure 6: Comparison of level set surfaces rendered in GVDB (left)
and OpenVDB (right). The armadillo renders at 66 ms/frame (15
fps) in GVDB and 281 ms/frame in OpenVDB. The Buddha renders
at 24 ms/frame (51 fps) in GVDB and 148 ms/frame in OpenVDB.

Figure 8 and find a result consistent with the analysis of [FSK13].
Small bricks achieve the best occupancy but place a burden on ren-
dering as the DDA spends more time in entry and exit and less time
doing useful work. Large bricks achieve the best rendering perfor-
mance but at the cost of occupancy. As data resolution increases
occupancy is naturally reduced as the discrete volume more closely
approximates the data. Assuming larger simulations can reside in
GPU memory it becomes more important to improve rendering
time with brick dimensions of 643 or higher as the data exceeds
20483.

6.2. Multiple Scattering

GVDB was written in CUDA and designed to integrate into generic
raytracing solutions such as NVIDIA OptiX [PBD∗10]. Two key
changes were required. First, ray starts must be possible anywhere
including inside the volume itself. This is achieved by initializing
to t=0 when bounding box intersection fails. We then provide a ray
intersection program for GVDB volumes which returns first hits for
isosurfaces and deep colors for ray sampling. These are generically
integrated into OptiX to allow inter-reflections between polygons
and volumes. For Figure 1 three rays/pixel are cast: one primary
ray, one scattering ray, and one low cost shadow ray. These are
integrated over multiple frames for sample convergence.
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Figure 7: Example tree topologies studied here. All figures use 163 bricks. From left to right, a) tilemaps with depth two and a 1283 top-level
index map, b) an N-ary tree with depth four and 83 internal divisions, c) a deeper N-ary tree with depth five and smaller 43 divisons, and d)
an octree with seven levels. We find that shallow index maps (left image) result in significant memory overhead with excessive DDA traversal,
whereas deep octrees (right image) contain too many interior nodes for efficient tree modification. A good balance is achieved with <3,3,3,4>
N-ary trees using 163 or 323 bricks. Coloring of nodes by level is the same in each figure.

Data Size and Structure Atlas and Tree Construction Rendering
one time cost per data frame static data with interaction

Topology
Data

VDB Config Depth # Bricks
Occup. Bricks to Tree Build Empty Skip Raycast Total

Size (D) (%) GPU (ms) Time (ms) (ms) (ms) fps
N3-tree 512 <3,3,3,3> 4 12,131 27% 2886 9.2 5.8 19.4 51
N3-tree 512 <3,3,3,4> 4 2,036 36% 533 1.6 5.2 17.3 58
N3-tree 512 <3,3,3,5> 4 299 47% 112 0.3 4.9 14.1 71
N3-tree 512 <3,3,3,6> 4 37 58% 49 0.04 4.7 11.5 87
N3-tree 1024 <3,3,3,3> 4 83,218 22% 18940 66.3 7.0 38.8 26
N3-tree 1024 <3,3,3,4> 4 12,131 27% 2947 8.4 5.9 35.4 28
N3-tree 1024 <3,3,3,5> 4 2,036 36% 594 1.6 5.2 28.6 35
N3-tree 1024 <3,3,3,6> 4 299 46% 228 0.3 4.8 22.9 43
N3-tree 1536 <3,3,3,3> 4 267,665 21% 61889 212.1 7.4 64.2 15
N3-tree 1536 <3,3,3,4> 4 38,863 25% 9466 33.3 6.4 52.7 19
N3-tree 1536 <3,3,3,5> 4 5,286 28% 1487 4.4 5.4 52.3 19
N3-tree 1536 <3,3,3,6> 4 945 41% 675 0.9 5.2 37.4 27
N3-tree 2048 <3,3,3,3> 4 616,444 20% 136730 461.0 7.8 92.4 11
N3-tree 2048 <3,3,3,4> 4 83,218 22% 18410 69.8 6.4 64.5 16
N3-tree 2048 <3,3,3,5> 4 12,131 26% 3245 9.3 5.6 57.0 17
N3-tree 2048 <3,3,3,6> 4 2,036 36% 1445 1.8 5.1 49.4 20
Octree 2048 <1,1,..,1,3> 8 616,444 20% 130874 788.0 8.8 125.6 8
Octree 2048 <1,1,..,1,4> 7 83,218 22% 19298 105.5 7.7 108.5 9
Octree 2048 <1,1,..,1,5> 6 12,131 26% 3485 14.1 6.5 93.5 11
Octree 2048 <1,1,..,1,6> 5 2,036 36% 1146 2.7 5.6 87.2 11
N2-tree 2048 <2,2,2,2,4> 5 83,218 22% 18333 72.0 6.6 71.9 14
OpenVDB 2048 <5,4,3> 3 616,444 20% 134381 469.0 13.7 114.2 9
Tilemap 2048 <7,4> 2 83,218 22% 19395 4863.0* 5.4 1202.0* 1*

Table 2: Performance results for a single frame at 1280x960 from the Waterjet simulation in Figure 1 at different data resolutions and VDB
topologies. Data Size (D) is the voxel resolution on the longest axis. The volume dimensions are < D,D11/32,D1/2 > voxels. The Raycast
Total is the time to render a single frame under camera rotation with a single primary ray, volumetric sampling and early ray termination
including empty skip time. To estimate an in-situ time-series rendering with changing topology entirely on GPU, add the Tree Build time to
this. To estimate time-series data streamed from host memory, add the Bricks to GPU time to these. * See Section 5.3 regarding Tilemaps

6.3. Topology and Tree Construction

To measure the performance of GVDB under different data sizes
and topologies a time-based sparse volume data set was generated
for a one million particle SPH simulation. Direct rendering of SPH
data is accomplished with binary voxel acceleration by Reichl et
al. [RCSW14]. However, our SPH simulation is used to prepare a
synthetic multi-resolution scalar voxel data to emulate in situ grid
methods. A liquid SPH simulation was chosen as semi-sparse struc-
ture of the fluid allows us to investigate both volumetric raysam-

pling and isosurface rendering. The density field is sparsely resam-
pled to generate volumes at multiple resolutions and brick sizes.
Once loaded into GVDB the desired VDB configuration is specified
and the corresponding tree topology is constructed for raytracing.

In Table 2 examine a single representative frame (290 of 1200)
to understand data scaling. Dynamic topology is investigated by
looking at full tree construction time. Tree rebuild is still CPU-
based but makes use of our memory pooling structures. Thus, we
expect significant improvements from GPU tree construction and

c© 2016 The Author(s)
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Figure 8: Occupancy and render time versus brick size and data
resolution for a representative frame of the Waterjet SPH sim-
ulation. As data scales occupancy is naturally reduced due to
tighter discrete approximation while rendering time dramatically
increases when the bricks are too small.

when only incremental changes are made during an in situ simula-
tion. Nonetheless, the results show that in many cases even our cur-
rent GVDB node pooling tree rebuild performs at interactive rates.
Build times in Table 2 are directly correlated with the number of
inserted bricks, which is related to the brick dimensions. Larger
brick sizes produce a fewer number of bricks resulting in faster tree
changes.

An interesting secondary effect on tree build time is the topol-
ogy choice. Regardless of brick size, octrees behaved on average
30% to 40% slower during node insertion than N3

8-trees (N-ary
trees with 83 interior nodes). Since octrees are deeper trees cov-
ering the same domain they also contain many more interior nodes
and their maintenance during construction is higher. At the opposite
end of the spectrum shown in Figure 7, tilemaps are two-level trees
using a large index. These also performed slowly which is unex-
pected since map insertions should be O(1). Unlike octrees having
a fast one byte bitmask, for tilemaps this was determined to be bit
counting since a 1283 index contains 2 million voxels or a bitmask
with 32768 64-bit words, resulting in a worst case scenario to find
or insert nodes in child lists. A direct implementation of brickmaps
would achieve O(1) insertions using virtual pointers but with a sig-
nificant memory cost, while we expect a direct implementation of
page table based hashing, as in Niessner et al. [NZIS13], to be com-
petitive in performance.

Overall, these discoveries motivate smaller node dimensions at
every level of the GVDB tree and a nice balance is achieved with
N3

8-trees using larger bricks. As shown in Table 2, when data sizes
move beyond 20483 voxels, 643 bricks result in dramatically faster
build times of 3 milliseconds or less with only a 10% increase in
occupancy.

7. Conclusions

We present GPU voxel databases as an efficient data structure and
raytracing technique for sparse volumes with dynamic topology.
GVDB rendering performance is significantly faster on the GPU

Figure 9: Raytracing of the Bunny Cloud (584x576x440) dataset
with isosurface rendering, multiple scattering and shadows using
GVDB embedded in the NVIDIA OptiX raytracing framework. Rays
are cast in arbitrary directions without additional preprocessing
other than the GVDB sparse volume representation. Hardware tri-
linear interpolation of the isosurface and gradients for the surface
normals are computed on the fly with apron voxels. Rendered in 1.3
seconds at 1280x960 with 16 samples and 3 rays/pixel on a Quadro
M6000.

with results visually identical to OpenVDB. While additional per-
formance measures are needed for comparison to GPU-based ren-
dering methods utilizing octrees or page tables over scalar fields,
we show that GVDB provides efficient results with many topology
configurations. Our next goal is to perform dynamic in situ simu-
lation with GPU-based topology changes. Additional goals include
the use of brick compression for faster disk IO and more exten-
sive testing of compute and stencil operations on GVDB volumes.
Out-of-core rendering with level of detail is an extension (add a
residency bit on each node) that is anticipated in our design but not
yet implemented. These future directions explore GVDB as an ef-
ficient data structure for in situ simulation and volume rendering
with applications to scientific visualization and motion pictures.
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