
RAMA HOETZLEIN, DEVELOPER TECHNOLOGY, NVIDIA

TRACKING STATE WITH THE STATEVIEWER

DATA VISUALIZATION OF THE
GRAPHICS PIPELINE:

“Data Visualizations assist humans with data analysis by representing information

visually.. These mechanisms rely on human perception to help understand data.”

Human Factors in Visualization Research, Melanie Tory & Torsten Moller

IEEE Transactions on Visualization and Computer Graphics, Vol 10, No 1, Jan 2004.

GRAPHICS PIPELINE

Shader State

Uniform Buffers

Vertex Buffers

Index Buffers

Tesselation State

Rasterizer State

Depth/Blend States

Pixel Shader State

Framebuffer State

Graphics State

is complex.

GRAPHICS PIPELINE

CAD/Workstation Applications solve complex, real world problems

T-FLEX CAD, 2012. Image from wikimedia commons.

CPU Bound: Traversal of CPU scene graph, or

drawing setup, outweighs GPU rendering.

Many CAD/Professional Workstation applications

are CPU Bound.

These are ideal candidates for next-gen APIs.

PROFILING PRACTICE

APP Driver

PROFILING PRACTICE

APP Driver

Profile

Modify

PROFILING PRACTICE

APP Driver

StateViewer Driver

capture

replay

visualize

PROFILING PRACTICE

APP Driver

StateViewer Driver

capture

replay

visualize

API

CPU Timing
State Profiling

(Sequence) Driver Timing GPU Timing

see the sequence

GOALS

API Tracing

 Identify named buffers at the time of API calls.

Value Tracing

 Identify which state arbitrary buffers belong to.

 Identify values inside named buffers.

 Identify values transferred by memcpy/map

Value-Delta Tracing

 Identifies changes in values in the same buffer.

 Identifies when switching buffers with same value.

We want tools that identify all of the above.

A 0

B 0

VBO

State

3 5

0 0 0 3

9

5 9

2

2

Simple

State

Tracking

A B A B B B A

Value

Tracking
A(0) B(0) A(0) B(3) B(5) B(9) A(2)

Value-

Delta

Tracking

Created Same State (0) Changed Same Same Changed

 Created Buf Buf (B) Buf (B) Buf

EXAMPLE

Colored rectangles map state values.

Colored flags map state value changes.

Create/write – app is allocating a new buffer, or rewriting it.

Switch – app is switching to another buffer.

Reuse – app is reusing buffer from last draw, no

switch.

Value of this buffer stays the same for the

first 4 draws. Then, value flip-flops between

2 values. Colors are random.. It’s about

seeing patterns.

VISUALIZATION DESIGN

PASS #1

 Replay all API calls to determine state bins.

 Example:

 DXCreateBuffer How will it be used? Unknown until later.

 IASetVertexBuffer Now, we know it is a VBO.

PASS #2

 Replay all API calls again, and record both input and output values.

 Compress all values using a 128-bit hash.

 Assign colors and track deltas based on the hash.

Every API call specifies a unique state bin, named object, and value.

ALGORITHM

ALGORITHM

Map buffer

…

 some data

 …

…

 other data

 …

time

128-bit hash

Assign hash Assign color

Compare

to previous

state

Different,

give red flag

(due to Map)

Map buffer

memcpy

memcpy

WHAT STATES TO TRACK?

0 Shader

1 Render Target

2 Viewport

3 Rasterizer State

4 Depth State

5 Blend State

6 Sampler State

7 Input

8 Texture

9 Vertex Buffer (IA Slot 0)

10 Vertex Buffer (IA Slot 1)

11 Vertex Buffer (IA Slot 2)

12 Vertex Buffer (IA Slot 3)

13 Vertex Buffer (IA Slot 4)

14 VS Const Buffer 0

15 VS Const Buffer 1

16 VS Const Buffer 2

19 PS Const Buffer 0

20 PS Const Buffer 1

21 PS Const Buffer 2

24 Index Buffer

STATEVIEWER

Contributed to apitrace, open source.

A free tool for deep state tracking /w value deltas.

Simple trace and view workflow.

apitrace

Application

.trace

run

d3dretrace
glretrace

replay

App Replay

.raw

track state

stateviewer

visualize data

Visualize

* Now availabe on github! *

STATEVIEWER:
SIMPLE EXAMPLE

Example:

Draw instanced spheres

with some GUI controls.

StateViewer output

STATEVIEWER:
SIMPLE EXAMPLE

Observe:

Frames separate by

white bars.

Each column is

one draw call.

First draw uses different shader, VBO,

and VS constant. This draws instanced spheres.

Eight other calls use same shader, and VBO.

These draw the GUI bars.

PS Const1 flip-flops between 2 states.

This is the grey and green bars in

the GUI of the app.

“Mathematical Games – The fantastic combinations of John Conway’s new solitaire game ‘life’”. John Horton Conway, 1970.

Image from wikimedia commons.

COMMON PATTERNS

The Flip-Flop

Revit

Bars oscillate between values. Indicates

potentially unnecessary switch between

two states.

Example:

Draw faces, then edges, then

faces, then edges.

Flatliner

Set of draw calls which use the

same shader, VBO and number of primitives.

Draw may be unnecessarily repeated.

Example:

Drawing multiple copies of an object

in the different locations.

COMMON PATTERNS

COMMON PATTERNS

The Repeater
A set of states that is similar

to an earlier group.

Strongly suggests candidates for grouping.

Example:

Draw legs, arms, back and seat of a chair.

Then draw whole chair again!

ALL ABOUT THE (DATA) PATTERNS

Too many red flags. Too many orange flags. Green flags!

REAL-WORLD APPLICATIONS

REAL-WORLD APPLICATIONS

Good use of const buffers.

 (Multiple buffers, mostly green flags)

Shader is switched frequently.

Candidate for shader-based sorting.

Drawing many small object.

Candidate for geometry binning.

REAL-WORLD APPLICATIONS

REAL-WORLD APPLICATIONS

Shader re-assigned on each draw.

Vertex buffer rewritten on every other draw.

Constant buffers rewritten,

often with repeatedly used value. (Flip-flop)

Repetitive pattern suggests

duplicated geometry. (Repeater)

STATEVIEWER: TOOL COMPARISON

GPU Timing:

Gives valuable information about

what the graphics API and GPU are doing.

Good for GPU-bound apps. Use NSight.

CPU Function Profiling:

Gives valuable information about which

are the slowest functions.

Good for Algorithm-bound apps.

StateViewer:

Gives systematic information about

design patterns in the application.

Good for Data-bound apps.

Tells us why the app is slow, without access to code!

e.g. Does GPU spend more time

in vertex or pixel shader?

e.g. Which specific part of

a CPU algorithm is slowest?

e.g. How could the data be

better organized for submission

to graphics pipeline?

StateViewer has identified unknown issues

in several large CAD/Workstation applications.

Provides an overall picture of the

application’s systematic behavior.

Gives feedback with direct indicators

on areas of improvement.

SUMMARY

DATA VISUALIZATION OF THE
GRAPHICS PIPELINE

Thank You!

