

GPU TECHNOLOGY CONFERENCE

FAST FIXED-RADIUS NEAREST NEIGHBORS: INTERACTIVE MILLION-PARTICLE FLUIDS

Rama C. Hoetzlein, Graphics Devtech, NVIDIA

Cognitive Science - Behavioral simulation

Background - What is Fixed-Radius NNS?

Find all neighbors in a fixed radius R

Overall Strategy

Spatial Partitioning:

1. Partition space equally into bins

2. Insert each particle into bins

3. Only need to search particles found in neighboring bins

O (N k)

Applications - Example

Research Background

Fluid Simulation

2003 Muller Particle-Based Fluid Simulation for Interactive Apps (SPH)

2009 Solenthaler Predictor-Corrector (PCISPH)

2013 Macklin & Muller Position Based Fluids

1966 Levinthal Molecular-Model Building by Computer "Cubing" method

Nearest Neighbor Search

2006 Randolph Franklin Nearest Point Query on 184,088,599 Points in E[^]3 with a Uniform Grid. *CPU Grid Search*

2010 Simon Green Particle Simulation using CUDA Parallel Radix Sort

2013 Hoetzlein Parallel Counting Sort NNS

GPU-based NNS

r.c.hoetzlein means prate. v theory engineering artwork personal

FLUIDS v.2 - A Fast, Open Source, Fluid FLUIDS v.2 - A Fast, Open Source, Fluid

ZL-b license. CPU & GPU simulator. - CPU. Requires basis graphic and (GeFor - GPU, Requires CUDA capable card (GeF Vsual Studio 2008. Windows download: <u>fluids_v2.szip</u> Linux download: <u>fluids_v2.ter.gz</u> (Thanks to Fariza Dan Prasetyo, Institute

NEW FLUIDS v.3 - A Large-Scale, Open Fluids v.3, released Dec 2012, is now availat The latest version features up to 8,000,000

With a history in astrophysics, there is a get difficult or complex. FLUIDS v.1 was devel readable, efficient, and easy to understand. I currently available. FLUIDS v.1 was designed

The reader is referred to the following instru

2006. Micky Kelager (DIKU, Copenhagen) 2004. Marcus Vesterlund (Umea Univ, Swe

Surface Reconstruction: Ver received several email about surface interested in this research, I've started a weld discussion. Check it out here: Surface Reconstruction of SPU Thirds

Notes for the Novice:

- You've probably implemented a simple, fair right inter-particle forces, these particles cou

Welcome

WELCOME

? help

DOWNLOAD

Fluids v.3 is a large-scale, open source fluid simulator for the CPU and GPU using the smooth particle hydrodynamics method. Fluids is capable of efficiently simulating up to 8 million particles on the GPU (on 1500 MB of ram).

FAQ

DEVELOPMENT

This demo video shows 4 million particles simulated at 1/2 fps. At this rate, 3000 frames are simulated in just 1.5 hours. Published in December 2012, this is the fastest, freely available GPU simulator (for now anyway). See the Performance page for details.

PERFORMANCE

Fluids v.3 http://fluids3.com

High Performance computing for scientific applications. "Just the basics", Zlib license, Research & Education, Solves NNS

Repeat step for each digit in key

0

outpu	ut										
	5	8	0	3	7	2	6	1	9	4	
	50	50	51	60	61	61	62	70	70	71	

Counting Sort Input

0	1	2	3	4	5	6	7	8	9
51	70	61	60	71	50	62	61	50	70

Observations:

- 1. Goal is to sort by bin
- 2. Position inside bin in irrelevant
- 3. Therefore, many duplicate keys
- 4. Better to perform 1-radix on exact bins, rather than on digits.

Input										
	0 51	1 70	2 61	3 60	4 71	5 50	6 62	7 61	8 50	9 70
 Insert	+ Cou	nts								
	0 51 1	1 70 1	2 61 1	3 60 1	4 71 1	5 50 1	6 62 1	7 61 2	8 50 2	9 70 2
		5() = 2	6	50 = 1		70 =	2		
			l = 1		51 = 2		71 =			
		52	2 = 0	6	52 = 1		72 =	0		
 Prefix	Sum									
	50	50	51	60	61	61	62	70	70	71
	0		2	3	4		6	7		9
Counti										
	0	1	2	3	4	5	6	7	8	9
					_					
	5	8	0	3	2	7	6	1	9	4
	50	50	51	60	61	61	62	70	70	71
Outpu	ıt									
	5	8	0	3	2	7	6	1	9	4
	50	50	51	60	61	61	62	70	70	71

What is a good Grid Cell Size?

GPU TECHNOLOG

- LL

Algorithm Comparison

CUDA Particles (Radix Sort)

Insert Particles assign particle to cell

Sort Particles thrust:sort_by_key example: CUDA RadixSort for 1 to 4 (each byte in key) Bin Counts Bin Prefix Sum RadixAddOffsetAndShuffle

Reindex (copy particles in order)

Time integration

Fluids v.3 (Counting Sort)

Insert Particles assign particle to cell

Sort Particles

Bin Sums Bin Prefix Sum Radix Offset and Shuffle

ReIndex (copy particles in order)

Time integration

Algorithm Comparison

Bin Counting

Bin Counting

Old Method Parallel Sums

Each GPU thread computes binary sets of sums.

Bin Counting

New Method				
	+1	+1	+1	+1
Atomic	+1	+1		+1
Adds		+1		
	2	3	1	2

Each particle atomic-adds into bin at the same time bin is determined.

Results - Queries per Second

GPU TECHNOLOGY CONFERENCE

Results - Time for Each Step

GPU TECHNOLOG

11

Results - Fluids Example

* Results do not show fluid accuracy or time step.

Continuous Ocean Simulation, 4.2 fps, 4,194,304 particles

GeForce GTX 460M

Fluids v.2, 2009 16,384 at 32 fps

same hardware 11x faster Fluids v.3, 2013 193,487 at 32 fps

Thank you!

• Rama C. Hoetzlein, <u>rama@rchoetzlein.com</u>

http://fluids3.com