
6 September/October 2012 Published by the IEEE Computer Society 0272-1716/12/$31.00 © 2012 IEEE

Applications Editor: Mike Potel

Graphics Performance in Rich Internet
Applications
Rama C. Hoetzlein
Aalborg University Copenhagen

Imagine an Internet experience in which online
data visualization and interaction are fully dy-
namic and smooth even when displaying large-

scale networks. Several rich Internet application
(RIA) frameworks are working in this direction.
Most browsers have integrated HTML5 and the
new canvas elements, pending fi nal specifi ca-
tion, and Adobe recently released Flash Player 10.1
with GPU-accelerated video playback. The major
RIA players are exploring GPU-accelerated designs
while competing to maintain an interactive expe-
rience by reducing virtual code execution and CPU
rendering time.1

So, what’s the best RIA framework for developing
large-scale, dynamic online data visualizations, ap-
plications, or games? To answer this, I developed
a test suite to consistently measure raw graph-
ics performance in RIAs. It consists of a simple
sprite-based particle system coded and optimized
on each framework. By testing under a variety of
languages, RIAs, browsers, and rendering options,
I developed a coherent picture of the current op-
tions for online 2D graphics.

Implementation
The basic test consists of n transparent 2D sprites
of 32 × 32 pixels each, rendered and randomly
placed on a 1,280 × 960-pixel canvas. The sprites
are then animated according to a simple physics
system, with a point gravity at the canvas’s center.
The user can control the number of sprites, up to
one million.

The test also measures the simulation and ren-
dering times separately. This enables me to analyze
code execution independently of graphics perfor-
mance on each framework and browser. Network
download time, video playback, or 3D graphics
aren’t tested here, just raw graphics performance
for 2D sprites, as you would fi nd in online data
visualization or gaming.

The test was implemented and rendered in four
frameworks (Flash, HTML5, OpenGL, and We-
bGL) using three programming languages (C/C++,
ActionScript 3, and JavaScript). Figure 1 shows
screenshots of the tests for various combinations
of RIA frameworks and languages.

The Basic Simulation Loop
The simulation loop is identical in all systems.
Shown in Figure 2 for C/C++, it consists of a basic
Eulerian integrator and a directional gravitational
force toward the canvas center, resulting in a to-
tal of seven additions, six multiplications, and one
square root for each simulated particle per cycle.

Flash with Sprites
Rendering differs considerably in each framework.
The simplest framework is Flash using sprites be-
cause it requires no direct rendering. Programmers
can add sprites to the master DisplayList for
each n particles, using a master bitmap, and posi-
tion them dynamically at runtime (see Figure 3).

Flash with bitmapData
For rendering in Flash using the bitmapData
method instead of sprites, the main program loop
needs additional code to rasterize the sprites into
the bitmap data object using the copyPixels
method (see Figure 4).

HTML5
To render the particle system in HTML5, the new
canvas 2D tag is used. Retrieval of the canvas and
its context occurs during page initialization. The
code then preloads the sprite image into a new
Image object. The main loop uses the context’s
drawImage function to render the sprite at each
particle location (see Figure 5). Unlike the Flash
sprite method, and similarly to the Flash bit-
mapData method, this method doesn’t reposition

 IEEE Computer Graphics and Applications 7

sprite objects and renders the bitmap directly at
the particle locations per frame.

OpenGL with C/C++
The baseline test uses OpenGL in native C/C++.
Because OpenGL is a low-level API, the code is
somewhat more involved. A naive method sends
repeated draw calls to the GPU by using glBegin
and glEnd commands (see Figure 6). This requires
a separate PCI bus transfer from the CPU to the
GPU for each sprite. Figure 6 also shows that, be-
cause OpenGL is low level, programmers must ex-
plicitly specify each sprite’s four corners and their
texture coordinates.

OpenGL with Vertex Buffer Objects
A much more efficient OpenGL strategy is to use
vertex buffer objects (VBOs), which transfer all sprite
geometry as a single block of data to the GPU per
frame (see Figure 7).

WebGL
WebGL is similar to OpenGL but implements
OpenGL ES (Embedded Systems), a simplified graph-
ics API designed for mobile devices. Developers must
specify the shaders being used to transfer individ-
ual pixels to the display. In this case, the fragment

(a) (b)

(c) (d)

Figure 1. Rendering tests with 10,000 sprites in (a) Flash with ActionScript 3 (AS3), (b) HTML5 with JavaScript, (c) native OpenGL
with C++, and (d) WebGL with JavaScript, on Google Chrome.

float dx, dy, dist; // For each particle …
for (int n=0; n < num_p; n++) {
 dx = 640 - pos[n].x;
 dy = 480 - pos[n].y;
 dist = sqrt(dx*dx+dy*dy);
 vel[n].x += dx / dist; // Gravitational force
 vel[n].y += dy / dist;
 pos[n].x += vel[n].x*0.1; // Euler integration
 pos[n].y += vel[n].y*0.1;
}

Figure 2. The simulation loop in C/C++. This loop animates the particles
using a gravity source at the screen’s center.

8 September/October 2012

Applications

shader returns the pixel at a particular texture
coordinate in the sprite.

Because WebGL doesn’t contain OpenGL’s direct
draw methods, graphics programmers use VBOs
instead. In addition, only triangles, not quads, can
be rendered. So, the code must specify six corners
of two triangles to draw each sprite (see Figure 8).

Discussion
Although the code becomes increasingly complex
with the more low-level frameworks, GPU usage
in OpenGL and WebGL clearly improves perfor-
mance. Flash and HTML5 hide much graphics
magic, which is their primary responsibility. In the
future, these frameworks will likely become more
flexible and more efficient.

Testing and Results
I measured the simulation and rendering frame
rates separately at 15 data points for n sprites from
1,000 to 100,000 in each combination of frame-
work and browser (Firefox, Chrome, and Internet
Explorer 9). At times, results were outside the CPU
timer’s measureable limits, such as with OpenGL
using VBOs, which started at 240,000 sprites. In
those cases, I estimated values in the test range
through linear extrapolation. I conducted the tests
on a Sager NP8690 Core i7 640M laptop with a
GeForce GTX 460M graphics card. The source code
and results are freely available at www.rchoetzlein.
com/sprites.

Scalability
Figure 9 shows some surprising outcomes regard-
ing scalability with the number of sprites. The
newly released HTML5 specification has sparked
considerable debate over HTML5 versus Flash per-
formance.2 However, I found the browser choice
to be more important to rendering performance.
Firefox performed one-third as well as Chrome
and Internet Explorer 9 (IE 9) when using Flash

// Global class for embedded sprite image
[Embed(source = ‘../assets/ball32.png’)]
private var ballImage:Class;

// Reset rendering – Run only when N changes
while (this.numChildren > 0)
 this.removeChildAt (0); // Clear previous display list
this.addChild (textFPS); // Add frame counter to display
 // For each particle …
for (var n:Number=0; n < particleNum; n++) {
 ballSprite = new ballImage(); // Create new sprite
 ballSprite.x = particlePos[n].x; // Position at particle
 ballSprite.y = particlePos[n].y;
 this.addChild (ballSprite); // Add to display list
}

Figure 3. The
rendering
setup for
Flash using
ActionScript
3 with sprites.
The main
loop, not
shown here,
repositions
each sprite to
new particle
positions.

glEnable (GL_TEXTURE_2D);
glBindTexture (GL_TEXTURE_2D, ball_glid);
for (int n=0; n < num_p; n++) {
 glLoadIdentity ();
 glTranslatef (particle_pos[n].x, particle_pos[n].y, 0);
 glBegin (GL_QUADS); // Transfer each quad to GPU
 glTexCoord2f (0, 0); glVertex2f (0, 0);
 glTexCoord2f (1, 0); glVertex2f (32, 0);
 glTexCoord2f (1, 1); glVertex2f (32, 32);
 glTexCoord2f (0, 1); glVertex2f (0, 32);
 glEnd ();
}

Figure 6. The rendering loop for OpenGL using C/C++ with naive draw
methods. Because OpenGL is low level, graphic programmers must
explicitly specify each sprite’s four corners and their texture coordinates.

// Main Loop – Run per frame
RenderBuffer.lock();
RenderBuffer.fillRect (canvasRect, 0x222233);
RenderBuffer.unlock();
for (var n:Number=0; n < particleNum; n++) {
 RenderBuffer.copyPixels (ballBitmap.bitmapData,
 ballBitmap.bitmapData.rect, particlePos[n]);
}

Figure 4. The rendering loop for Flash using ActionScript 3 with the
bitmapData method. This loop uses the copyPixels method to
rasterize the sprites into the bitmap data object.

// Setup
var canvas = document.getElementById(‘mycanvas’);
var context = canvas.getContext(‘2d’);
var ball_img = new Image();
ball_img.src = “ball32.png”;

// Main loop
for(var i = 0, j = particles.length; i < j; i++)
 context.drawImage (ball_img, particles[i].posX,
 particles[i].posY);

Figure 5. The rendering setup and main loop for HTML5 using
JavaScript. (Only relevant portions of the code are shown.) This method
renders the bitmap directly at the particle locations per frame.

 IEEE Computer Graphics and Applications 9

// Pack 4-corners of each quad (all done on CPU)
float* dat = bufdat;
for (int n=0; n < num_p; n++) {
 *dat++ = pos[n].x; *dat++ = pos[n].y;
 *dat++ = pos[n].x+32; *dat++ = pos[n].y;
 *dat++ = pos[n].x+32; *dat++ = pos[n].y+32;
 *dat++ = pos[n].x; *dat++ = pos[n].y+32;
}
glEnable (GL_TEXTURE_2D);
glBindTexture (GL_TEXTURE_2D, img.getGLID());
glBindBufferARB (GL_ARRAY_BUFFER_ARB, vbo);
// Transfer all to GPU
glBufferDataARB (GL_ARRAY_BUFFER_ARB, sizeof(float)*2*4*num_p, bufdat, GL_DYNAMIC_
 DRAW_ARB);
glEnableClientState (GL_VERTEX_ARRAY);
glVertexPointer (2, GL_FLOAT, 0, 0);
glBindBufferARB (GL_ARRAY_BUFFER_ARB, vbotex);
glEnableClientState (GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(2, GL_FLOAT, 0, 0);

glDrawArrays (GL_QUADS, 0, num_p); // Ask GPU to draw all sprites

Figure 7. The rendering loop for OpenGL using C/C++ with vertex buffer objects (VBOs). Earlier in the code
(not shown), data buffers are allocated to store the 2D coordinates representing the four corners of every
sprite, resulting in 2 * 4 * N floats. These are transferred in one block to the GPU for rendering.

// Main loop
for(var i=0, j=0, i < num_particles; i++) {
 vert[j++] = particle[i].posX; vert[j++] = particle[i].posY;
 vert[j++] = particle[i].posX+32; vert[j++] = particle[i].posY;
 vert[j++] = particle[i].posX+32; vert[j++] = particle[i].posY+32;
 vert[j++] = particle[i].posX; vert[j++] = particle[i].posY;
 vert[j++] = particle[i].posX+32; vert[j++] = particle[i].posY+32;
 vert[j++] = particle[i].posX; vert[j++] = particle[i].posY+32;
}
gl.bindBuffer(gl.ARRAY_BUFFER, geomVB); // Transfer to GPU
gl.bufferData(gl.ARRAY_BUFFER, vertices, gl.DYNAMIC_DRAW);

// Setup 2D viewport
gl.viewport(0, 0, gl.viewportWidth, gl.viewportHeight);
gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);
mat4.identity(pMatrix);
mat4.scale (pMatrix, [2.0/SCREEN_WIDTH, -2.0/SCREEN_HEIGHT, 1]);
mat4.translate (pMatrix, [-(SCREEN_WIDTH)/2.0, -(SCREEN_HEIGHT)/2.0, 0]);

// Render Vertex Buffer Object (VBO) on GPU
gl.bindBuffer(gl.ARRAY_BUFFER, geomVB);
gl.vertexAttribPointer(shaderProgram.vertexPositionAttribute,
 geomVB.itemSize, gl.FLOAT, false, 0, 0);
gl.bindBuffer(gl.ARRAY_BUFFER, geomTB);
gl.vertexAttribPointer(shaderProgram.textureCoordAttribute,
 geomTB.itemSize, gl.FLOAT, false, 0, 0);

gl.activeTexture(gl.TEXTURE0); // Bind to sprite image
gl.bindTexture(gl.TEXTURE_2D, neheTexture);
gl.uniform1i(shaderProgram.samplerUniform, 0);

gl.drawArrays(gl.TRIANGLES, 0, 6*num_particles); // Ask GPU to render

Figure 8. The rendering loop for WebGL using JavaScript with VBOs. Instead of transferring four corners of
each sprite quad, programmers must specify six corners of two triangles to draw each sprite.

10 September/October 2012

Applications

with both sprites and bitmap data (see the upper
orange lines). For example, with Flash, Firefox took
78 ms per frame to render 10,000 sprites, whereas
Chrome and IE 9 took approximately 44 to 48 ms.
However, with HTML5, Firefox took 43 ms per
frame, whereas Chrome and IE 9 took 60 and 50
ms per frame, respectively (see the dashed lines).
Online-game developers working in Flash have
debated using sprites versus bitmapData (see the
graph lines with tick marks in Figure 9). In my
tests, the best performer was Flash with AS3 using
bitmapData on Chrome (see the lower red line).
However, in Firefox, both Flash methods were
slower than HTML5. So, the combination of RIA
framework, browser, and language were found to
determine drawing performance; besides, develop-
ers shouldn’t choose a framework on the basis of
performance alone. Generally, though, bitmap-
Data was approximately 10 percent faster than
sprites in Flash and used considerably less mem-
ory (30 Mbytes versus 132 Mbytes for 100,000
sprites).

Of course, RIAs, which use a virtual machine
and CPU rendering for OS independence, can’t
compare to native OpenGL with C/C++. Do you
care to guess how big the difference is? As a start-
ing point, naive OpenGL programmers often use
simple draw commands that result in too many
draw calls, thus overwhelming the PCI bus trans-
fer to the GPU (see the upper green line in Figure
9). However, OpenGL professionals in the graphics
industry use VBOs to package millions of polygons
per frame for the graphics card. The same sprite

test in OpenGL with VBOs (see the green line hug-
ging the x-axis in Figure 9) rendered 10,000 sprites
in 0.5 ms. The rendering time didn’t exceed 50 ms
(20 fps) until it reached 700,000 sprites.

WebGL debuted in 2009 to provide OpenGL-
style acceleration to online applications. As ex-
pected (and as Figure 9 shows), WebGL was slower
than native OpenGL because it used JavaScript for
execution but was still nearly seven times faster
than Flash owing to GPU acceleration. Using We-
bGL point sprites instead of two triangles resulted
in a marginal 1-ms gain for 10,000 sprites.

Execution vs. Rendering
Examining the differences between the code ex-
ecution and rendering times was found to be more
instructive. One way to approach this is to ask,
how much time does simulation require per frame
versus rendering for 100,000 sprites? Figure 10
shows the results. The execution times were high-
est for RIA frameworks that ran JavaScript engines,
which had to interpret code into native machine
language.

Uniquely, this test methodology can provide a
deductive analysis of potential problem areas and
suggestions for existing browsers and frameworks.
By considering a fixed frame rate of 700 ms (1.5
fps), with 100,000 sprites, I examined the relative
percentage of time for each combination of browser
and RIA framework (see Table 1). In this scenario,
virtual code execution used between 8 to 10 per-
cent of the total simulation time, whereas native C/
C++ used less than 1 percent. Also, if one browser

120

100

80

60

40

20

0

Ti
m

e
p

er
 fr

am
e

(m
s)

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000 20,000

No. of sprites

Interactivity limit (20 fps)

Naive method

VBOs

Vertex buffer objects (VBOs)
Point sprites

Firefox

Internet
Explorer

Google
Chrome

WebGL OpenGL

Flash sprites
Flash bitmapData
HTML5 canvas

Figure 9. Graphics scalability for rich Internet application (RIA) frameworks across browsers. The time per frame is in milliseconds,
so lower values are better. The number of sprites rendered ranged from 1,000 to 20,000. Overall, HTML5 and Flash performance
depended heavily on the browser. Results and code samples are available at rchoetzlein.com/sprites.

 IEEE Computer Graphics and Applications 11

showed dramatically higher usage relative to the
others, I could deduce a potential for performance
gain in that RIA framework’s implementation on
that browser, because the other frameworks were
able to achieve the same goal. Keep in mind the
same code ran on each browser. Table 1 groups the
outliers.

Table 1 separately reports the rendering and Ja-
vaScript execution times. I measured rendering time

by disabling simulation while enabling the render-
ing loop. Conversely, I measured execution time
by disabling rendering. For OpenGL, there’s no
JavaScript engine, but I measured the rendering
and simulation code loops separately. The overall
performance (see Figure 9) is the sum of these ren-
dering and code execution engines.

The most obvious outlier is Flash with Firefox,
which used 70.2 percent of its time for rendering,

600

500

400

300

200

100

0

Firefox

Firefox

Firefox
Chrome

Chrome
Chrome

IE 9

IE 9

IE 9

Flash with AS3
(sprites)

Flash with AS3
(bitmapData)

HTML5 with JavaScript
WebGL with

JavaScript
OpenGL with C++

VBO VBOPoint
sprites Naive

Ti
m

e/
fr

am
e

(m
s)

Rendering
Execution

Figure 10. The simulation and rendering times per frame for various RIA frameworks and browsers for 100,000
animated sprites, 32 32 pixels each, rendered on a 1,280 900 canvas. Lower values are faster. The execution
times were highest for RIA frameworks that ran JavaScript engines, which had to interpret code into native
machine language.

Table 1. Simulation and rendering times per frame for 100,000 sprites, with the percentage of time for a fixed frame rate
of 700 ms (1.4 fps).

Implementation
Simulation
time (ms)

Rendering
time (ms)

Total time
(ms)

Simulation
%

Rendering
%

Flash, ActionScript 3 (AS3), sprites, Firefox 161.8 491.2 653.0 23.1 70.2

Flash, AS3, sprites, Chrome 56.3 174.4 230.7 8.0 24.9 A

Flash, AS3, sprites, Internet Explorer 9 (IE 9) 48.8 291.2 340.0 7.0 41.6

Flash, AS3, copyPixels, Firefox 168.0 388.0 556.0 24.0 55.4

Flash, AS3, copyPixels, Chrome 59.5 193.5 253.0 8.5 27.6 B

Flash, AS3, copyPixels, IE 9 53.5 178.5 232.0 7.6 25.5

HTML5, JavaScript, Firefox 9.7 417.0 426.7 1.4 59.6

HTML5, JavaScript, Chrome 59.3 391.0 450.3 8.5 55.9 C

HTML5, JavaScript, IE 9 39.0 443.3 482.3 5.6 63.3

WebGL, vertex buffer objects (VBOs), Chrome 54.0 23.0 77.0 7.7 3.3

WebGL, sprites, Chrome 54.7 4.3 59.0 7.8 0.6

OpenGL, naive 3.3 137.9 141.2 0.5 19.7

OpenGL, VBOs 3.3 7.5 10.8 0.5 1.1

A, B, and C indicate three highlighted groups of outliers, suggesting potential framework or browser improvements. Bold indicates the
most obvious outliers.

12 September/October 2012

Applications

compared to 24.9 percent for Chrome and 41.6
percent for IE 9 (group A in Table 1). Similarly,
the Flash virtual machine running the particle
system used 24.0 percent of its time for simula-
tion on Firefox, 8.5 percent on Chrome, and 5.6
percent on IE 9 (group B). This suggests that both
the execution and rendering of Flash were slower
with Firefox.

With HTML5, however, Firefox achieved 1.4
percent execution time with its JavaScript engine
(only 9.7 ms per frame), so the outliers here were
Chrome at 8.5 percent and IE 9 at 5.6 percent
(group C). Firefox is clearly optimized for JavaScript
and HTML5, whereas the other two browsers are
optimized for Flash. Chrome and IE 9 were head-
to-head in Flash performance, except that sprite ob-
jects on IE 9 appeared to be slower than they should
have been at 41.6 percent rendering time.

Download Time
This test generated a 421-Kbyte Flash .swf, whereas
the HTML5-with-JavaScript files were 6.3 Kbytes
total and the WebGL code was 29.4 Kbytes. As I
imagined, Flash had significantly higher transfer
overhead owing to the library methods that sup-
port sprites, which are capable of event handling
and stylized rendering.3 For a simple particle
system, these features are unnecessary on each
sprite. However, to match Flash’s sprite flexibility,
a typical application might need significantly more
HTML5 JavaScript code.

Discussion
Clearly, trade-offs exist between flexibility, ease of
use, and project management that make the deci-
sion between Flash and HTML5 more subtle. As
a recent survey points out, good application de-
velopment shouldn’t rely on any particular RIA
framework.4

The results suggest clear strategies for RIA de-
velopers and areas of improvement for frame-

work toolmakers. Some conclusions from this
research are that

 ■ HTML5 rendering is still slower than Flash in
Chrome and IE 9.

 ■ Flash renders significantly more slowly in Firefox
than in the other browsers.

 ■ WebGL is the fastest online renderer owing to
GPU acceleration.

 ■ JavaScript execution time plays a significant role
in online graphics (up to 10 percent of the total
time per frame, depending on the application).

These tests could be extended to cover addi-
tional platforms, such as Mac and Linux, and to
graphics performance on mobile devices.5 JavaS-
cript engine differences could also be investigated
more thoroughly. The most significant gains will
come when RIAs begin to fully exploit the GPU
for rendering. In my experiments, for rendering
100,000 sprites over 700 ms, OpenGL used only
3 percent of that time for execution and render-
ing combined, whereas WebGL used 10 percent,
and even the best RIA framework used 33 per-
cent. Undoubtedly, the first RIA framework to
achieve fully integrated hardware rendering will
gain a significant advantage in dynamic online
experiences.

People working with data visualization, such
as the rendering of large social networks, should
be able to render up to 10,000 nodes using bit-
mapData in AS3 with Chrome. Yet performance
depends highly on the browser. To render truly
large-scale networks online with tens of thou-
sands of nodes, the only solutions are to selectively
remove nodes, use view-dependent techniques,
or wait for GPU rendering to mature on RIA
frameworks.

References
 1. J. Roettgers, “HTML5 Video Outperforms Flash on

Mobile Devices,” GigaOM, 14 June 2011; http://
gigaom.com/video/mobile-html5-video-vs-flash.

 2. S. Perez, “Does HTML5 Really Beat Flash? The
Surprising Results of New Tests,” ReadWriteWeb,
10 Mar. 2010; www.readwriteweb.com/archives/
does_html5_really_beat_flash_surprising_results_
of_new_tests.php.

 3. J. Ward, “Ajax and Flex Data Loading Benchmarks,”
30 Apr. 2007; www.jamesward.com/2007/04/30.

 4. I. Yates, “HTML5, Flash and RIAs: 18 Industry
Experts Have Their Say,” 15 Oct 2011; http://ac-
tive.tutsplus.com/articles/roundups/html5-and-
flash-17-industry-experts-have-their-say.

 5. S. Christmann, “GUIMark 3—Mobile Showdown,”
Craftymind, 2011; www.craftymind.com/guimark3.

Rama C. Hoetzlein is a project scientist with the Depart-
ment of English Transliteracies project at the University of
California at Santa Barbara. He performed this research
while in the Department of Architecture and Media Tech-
nology at Aalborg University Copenhagen. Contact him at
rama@rchoetzlein.com.

Selected CS articles and columns are also available

for free at http://ComputingNow.computer.org.

