
MINT/VXF - A High-Performance Computing Framework
for Interactive Multimedia

Rama C. Hoetzlein
Media Arts & Technology Program

University of California Santa Barbara
Santa Barbara, CA 93106-5110

rch@umail.ucsb.edu

Dennis Adderton
Media Arts & Technology Program

University of California Santa Barbara
Santa Barbara, CA 93106-5110

dennis@mat.ucsb.edu

ABSTRACT
The development of a cross-disciplinary system for immer-
sive, real-time multimedia requires the solution to several
challenges simultaneously. Systems for interactive tiled dis-
plays range from low-level solutions via ChromiumGL [5] to
distributed scene graphs with OpenSG and CGLX [1]. Li-
braries such as DII and SuperCollider are designed for input
device abstraction and audio respectively[6]. However, inte-
grated multimedia systems covering all of these needs while
providing built-in, dynamic primitives for interdisciplinary
research do not yet exist. We present MINT/VXF, a frame-
work for high-performance visual computing and research
in interactive multimedia. Built using the MINT core event
system, GameX graphics engine [3], and NVIDIA’s CUDA
for hardware-based computing, MINT/VXF introduces a
novel scene graph architecture which abstracts GPU-based
node evaluation to selectively leverage GPU resources in dis-
tributed multimedia systems.

1. INTRODUCTION
MINT/VXF is an open source multimedia framework de-
signed to enable new media art and scientific research by
providing a consistent structure as a broadly designed meta-
library for C++ which integrates specialized libraries from
different disciplines. MINT, the core event system, was de-
veloped as an NSF Interactive Multimedia IGERT project
(2006-2008) and focused on basic integration of subsystems
in multimedia systems via event message passing. Specific
goals of MINT/VXF include support for common tasks in
both science and the arts, such as automatic cluster ren-
dering configuration on arbitrary displays, seamless video
and device integration, precise timing of sound and graphic
events, and integrated tools for scientific visualization.

While frameworks in a particular discipline become more
encompassing of their fields, they expand in power yet typ-
ically remain dedicated to their individual domains. MINT
was conceived from the bottom up as a meta-library for in-
tegrating the tools of other disciplines. Only a light-weight
wrapper with event passing is needed to incorporate new
modules. MINT is therefore conceived as a design tool where
researchers can work collaboratively on dedicated software
projects.

While we imagine MINT/VXF being used broadly by scien-
tific and artistic communities, practical efforts have focused
on supporting high-performance computing with the Allo-
sphere, a 30 foot immersive display environment in the Me-

Figure 1: Overall design of MINT/VXF with inter-
nal sub-systems enabling external applications.

dia Arts and Technology Program at UCSB, as a target test
space [4]. To that end one of the key development areas of
MINT is automatic detection and configuration of multime-
dia networks. Unlike other tools in this area, MINT/VXF
uses a platform independent, client-server window manager
to automatically scan, connect and create network connec-
tions and windows on available render servers running either
DirectX or OpenGL.

2. DEVELOPMENT
MINT/VXF was designed from the onset with integration
in mind. The core event system is used by all sub-systems
for basic message passing with serialization and timing con-
trol. The networking system transmits events over computer
networks defined by task area. The graph system provides
built-in dynamic primitives for all media tasks while allowing
selective acceleration on the GPU. Finally, multimedia sub-
systems for audio, video, and graphics each interact with the
scene graph to perform hardware specific input and output
tasks. These layers are integrated to allow user applications
to work with different multimedia domains.

The networking system of MINT/VXF is one of the cen-



Figure 2: Several applications with dynamic geometry developed using MINT/VXF including a) 3D Multi-
touch Desktop, b) Fluid simulation running on either CPU or GPU, c) Kinematic animation of a jointed,
articulated ”inchworm”, and d) Rendering of a point data set with shadow maps, screen-space ambient oc-
clusion and depth of field.

tral aspects of the current design. MINT/VXF is similar to
Open Scene Control in that it builds TCP and UDP con-
nections for event-based message passing over a network. [8]
We extend this with MINT/VXF to allow for virtual client-
server networks for each domain subsystem. This greatly
simplifies overall design by allowing a network of machines
for audio, video, graphics, and input to overlap and coex-
ist while keeping systems logically independent. Any set of
computers may be designated as an input, audio output, or
graphics output clients, or any combination of these. In this
way, multiple machines may be dedicated to various tasks
by domain. MINT/VXF may also act as both client and
server over all subsystems, so applications can run on a sin-
gle computer as one process.

The object graph system provides built-in nodes for images,
sounds, mesh geometry, visualization objects, and point clouds,
among others, to provide procedurally generated objects uti-
lizing both the CPU and GPU with NVIDIA’s CUDA Ar-
chitecture. Based on advanced scene graphs found in mod-
eling packages, such as Maya’s dependency graph [2], the
VXF object graph maintains functional relations in addi-
tion to geometric hierarchy. This allows nodes to notify
one another as data changes and to rebuild themselves as
needed at run time. To allow for rendering independence,
each node has a proxy node within the rendering subsys-
tem which maintains vertex buffers, geometry, and texture
data on the GPU. Proxy nodes can communicate with one
another to allow efficient GPU-to-GPU processes execution.
While many CUDA-based applications are currently domain
specific, MINT/VXF therefore allows multiple, distinct ob-
jects to take advantage of GPU parallelism in the same ap-
plication.

Unlike other scene graph frameworks, each scene node re-
tains both a user state and a dynamic state which may be
updated by any MINT/VXF sub-system. This allows each
output client to selectively evalute nodes downstream. An
example of rebuilding dynamic state is the distributed ren-
dering of volumetric surfaces. In this example, each client
recieves volumetric data as an input file over the network.
The input data uniformly updates the volume node on each
client, but the downstream visualization node (e.g. march-

ing cubes) can selectively evaluate the volume only as needed
to reconstruct the visible surface on that client display. More
generally, dynamic rebuilding allows partial node evaluation
to be localized to each client while maintaining uniformity
of the user application.

To support cluster rendering on tiled displays MINT/VXF
uses a replicated scene graph approach. Similar to other
systems, MINT/VXF collects input messages from input
clients and forwards them to output clients running the user
application, which updates the scene graph on each client
machine [1]. Network traffic is minimized since most in-
put events are from basic hardware devices. Many exist-
ing distributed multimedia systems define input as device-
generated, and restrict network traffic to input messages.
However, for applications where the results of intensive com-
putational tasks must be broadcast to multiple downstream
clients this becomes too restrictive. Input is thus defined in
MINT/VXF as any information which cannot be determin-
istically evaluated by the client scene graph. Input messages
may therefore include geometry, video, and other multime-
dia as needed.

3. RESULTS
MINT/VXF currently builds under Windows, Cygwin and
Linux with a rendering module for OpenGL. Several proto-
type applications were developed to simultaneously test and
extend the capabilities of MINT/VXF. The first of these, a
3D Multitouch Tabletop, uses two cameras to detect the 3D
positions of colored LEDs which allow users to sketch curves
on a two dimensional glass surface and then extrude those
curves into space using gestures. Due to the nature of the in-
teraction there are no mode changes. Users simply draw on
the surface, lift their fingers, then pick the curve they wish to
loft. Currently limited to extruded shapes, planned exten-
sions to MINT/VXF may allow for more complex modeling
tasks.

The second system developed in conjunction with MINT/VXF
is a fluid simluation of free surface flows using smoothed
particle hydrodynamics. The fluid system is a node which
derives from a point set, which itself derives from a basic
geometry class. Thus, due to integration with MINT/VXF,



Figure 3: Architecture of MINT/VXF integrating multiple subsystems, tiled displays, and scene graph nodes
capable of utilizing CPU or GPU resources. Each subsystem is able to interact with the scene graph.

the fluid class automatically benefits from point-based ren-
dering, and volumetric rendering of points as metablobs.
The fluid simulator can selectively switch bewteen CPU
and GPU execution using CUDA. While rendering presently
supports screen-space ambient occlusion, shadow maps, and
depth of field, this application is currently being tested in
the multi-display configuration.

A third application, currently in progress, is being devel-
oped to visualize the Schrödinger equations in the context
of the Allosphere. Our goal is to use the GPU capabilities of
MINT/VXF to allow scientists to visualize and interact with
simulation parameters in quantum wave propagation. Other
applications successfully tested in MINT/VXF include im-
porting and smoothing detailed geometric meshes, and kine-
matic simulation of an articulated, segmented caterpillar;
both running on networked tiled displays.

Although MINT/VXF does not currently optimize hardware
rendering state like high-performance system such as IRIS
Performer or OpenSceneGraph [7], this may be added. In-
stead our performance contributions focus on general eval-
uation of scene graph nodes for selective GPU acceleration,
and GPU-based hardware rendering with buffers.

Overall, MINT/VXF presents novel solutions in several ar-
eas of real-time multimedia including virtual networks, GPU-
enabled scene graphs, autonomous window management, in-
put type abstraction, and proxy nodes for rendering. Due
to its scope MINT/VXF is an on-going project. None the
less, several prototype applications have been developed and
new applications are currently underway. We intend to con-
tinue to develop MINT/VXF with increasingly sophisticated
projects as the system matures. Future goals include provid-
ing a wider variety of geometric nodes, a more substantial
audio subsystem, and additional rendering modules to sup-
port raytracing.

This research was funded in part by an NSF IGERT grant on
Interactive Digital Multimedia (DGE- 0221713), and with
the support of JoAnn Kuchera-Morin (Media Arts & Tech-
nology, Director) and Tobias Hollerer (Computer Science).

4. REFERENCES
[1] K.-U. Doerr and F. Kuester. CGLX: A cross-platform

cluster graphics library, 2008.

[2] D. Gould. Complete Maya Programming: An Extensive
Guide to MEL and C++ API. Morgan Kaufmann, San
Francisco, CA, 2003.

[3] R. Hoetzlein and D. Schwartz. GameX: a platform for
incremental instruction in computer graphics and game
design. In ACM SIGGRAPH 2005 Educators program,
number 36, New York, NY, USA, 2005. ACM Press.

[4] T. Hollerer, J. Kuchera-Morin, and X. Amatriain. The
Allosphere: A large-scale immersive surround-view
instrument. In Proceedings of the 2007 Emerging
Display Technologies Workshop at SIGGRAPH, 2007.

[5] G. Humphreys, M. Houston, R. Ng, R. Frank,
S. Ahern, P. D. Kirchner, and J. Klosowski. Chromium:
a stream-processing framework for interactive rendering
on clusters. ACM Transactions on Graphics (TOG),
21(3), 2002.

[6] J. McCartney. SuperCollider: A new real time synthesis
langauge. In Proceedings of the International Computer
Music Conference (ICMC), pages 257–258, 1996.

[7] J. Rohlf and J. Helman. Iris performer: a high
performance multiprocessing toolkit for real-time 3d
graphics. In Proceedings of the 21st ACM SIGGRAPH
Annual Conference on Computer Graphics, New York,
NY, 1994. ACM Press.

[8] M. Wright and A. Freed. Open sound control: A new
protocol for communicating with sound synthesizers. In
Proceedings of the International Computer Music
Conference, Thessaloniki, Greece, 1997.


