

GameX: A Platform for Incremental Instruction in

Computer Graphics and Game Design

 Rama C. Hoetzlein David I. Schwartz
 Media Arts & Technology Program Department of Computer Science
 University of California Santa Barbara Cornell University
 e-mail: rch@umail.ucsb.edu e-mail: dis@cs.cornell.edu

Figure 1. Platform design for a graphics engine supporting incremental instruction.

Abstract

Recent trends have resulted in an increased focus on game design
as a topic for teaching in higher education [Deutsch 2002].
Although many game engines currently exist, few of these were
designed with educational goals in mind. We distinguish between
industry-oriented engines and instructional game engines
designed to teach a range of concepts. The features needed to
teach game development to college undergraduates in engineering
and the humanities are explored. Specifically, we develop a
platform that supports incremental education in game design.
GameX, an open source instructional game engine, was developed
with this approach in mind and was used to initiate the Game
Design Initiative at Cornell University (GDIAC).

1 Introduction

The teaching of game design in higher education is an area of on-
going growth. As with any new development, game design
instruction has several points of origin. Institutes seeking to
educate the next generation of game industry designers have been
in existence for several years. Digipen began offering courses in
1994 and the Entertainment Technology Center (ETC) in 1999.

At established colleges and universities, the acceptance of game
design as a teaching topic is improving. Yu [2002] summarizes
these challenges as well as defining the main arguments in their
favor. She states: "The main supporting argument for a game
programming course is the importance of teaching collaboration
and process management. The game production process has
become so complex that talents have to be drawn from many

different fields, including people trained in computer science and
people who are not." Early course offerings in game design
include those by Ian Parberry at the University of North Texas
since 1993 [Parberry 2005], John Laird at the University of
Michigan, Ken Forbus at Northwestern University, Jessica
Hodgins at the George Institute of Technology, and Randolph
Jones at Colby College [Jones 2000].

In most instances, educators have had to rely on existing tools to
teach new courses. The development of game engines specifically
for education is relatively new, but also has precedents. Game
Maker by Mark Overmars at Utrecht University in the
Netherlands was first released in 1999 [Overmars 2004] while 3D
Game Studio was first released in 2000 in Germany 1. Alice, a
general tool for teaching graphics programming concepts was
developed by the Entertainment Technology Center at Carnegie
Mellon [Conway 2000]. The platform discussed here, GameX,
was released for use by the Game Design Initiative at Cornell
University in 2001. In all examples the goal has been to develop
a platform that makes it easier for students to learn a variety of
skills which may include game development.

A game design curriculum in higher education should provide a
broad overview of topics in computer science and the humanities
[Hoetzlein and Schwartz 2004]. We seek to provide a single
platform that supports a series of courses in game design on a
variety of instructional levels. While introductory courses might
consist of fundamental concepts that cover graphics, sound,

1 Retrieved from Conitec Datensysteme GmbH company website,
Germany: http://www.conitec.net/a4news.htm

artificial intelligence and networking, the challenge is to design an
instructional engine that can also be used to support
interdisciplinary collaboration and advanced topics.

Our goal is to develop a general instructional platform in parallel
with a strategy for education that allows the same platform to be
used to teach a series of courses at different levels (Figure 1).

2 Current Technology

Existing graphics engines present both positive and negative
aspects as instructional tools. Low-level engines, such as DirectX
and OpenGL, have become industry standards for real-time
graphics due to their performance and flexibility. However, these
features may come at the cost of platform dependence and
complexity which results in a steeper learning curve for
beginners. Commercial game engines continue to push the
frontiers of real-time graphics thus resulting in highly integrated
systems. A few such systems, such as Quake II, have been made
open source and have been used for instruction [Laird 2001].
However, these systems also have steep learning curves due to
their highly specific goals and resulting software complexity.
Authoring systems, such as 3D Game Studio, may provide an
alternative for game design instruction. These systems typically
provide application-type development tools for level and character
editing, and scripting languages for programming. While easier to
use than low-level and commercial engines, authoring systems
typically provide a single framework that may make it difficult to
teach a wide range of concepts that covers fundamental as well as
advanced topics.

Any of these systems might be used in an instructional setting,
since the success of a course is much more dependent on the
instructor's use of a tool than the tool itself. Our goal, however, is
to develop an instructional game engine with a steady learning
curve that can be tied to an incremental teaching approach to
support the widest range of students' abilities over a series of
courses.

3 GameX

The original goal of GameX was to develop a platform which
could be used to teach fundamental concepts in computer graphics
while simultaneously allowing students to collaborate with peers
in the arts and humanities. In Parberry's course offerings he states:
"We choose to use Windows, Visual C++, and Microsoft DirectX
for two reasons: for those students bound for the game industry, it
makes sense to expose them to tools actually in use in a
significant segment of the industry, and for the rest, it is
advantageous to expose them to a different set of software tools
before graduation." [Parberry 2005]. Consistent with these views,
GameX was designed as a library for C++. However, GameX
abstracts away from DirectX and OpenGL for reasons described
below.

Attention was placed on developing features that would facilitate
incremental instruction, provide basic programming challenges,
and allow room for growth. Ease of use was an important factor.
One primary goal was to reduce development time so that
engineering students could program games and collaborate with
peers in the humanities in a single fourteen week semester.

The design strategy for GameX was to develop an incremental
application programming interface (API) which would mirror the

instructional goals of the teacher. A difficultly with learning low-
level engines such as DirectX is the need to understand many
parts of the system to begin development. Yet students who learn
to program these systems are favored by the industry. GameX
provides an interface which allow students to learn at this level
without needing to know platform-specific details.

Figure 2. Multi-level interfaces in GameX including a) Low-level
drawing commands, b) Intermediate 3D modeling and rendering,

and c) High-level gaming system interfaces

All development using GameX occurs in C++, yet the degree of
program abstraction can be varied by how the GameX API is used
or taught. For example, students might learn about viewing
systems by calling low-level drawing primitives in GameX
(Figure 2a). At the next level, the instructor might wish to provide
a default three dimensional viewing system while teaching
concepts in 3D modeling (Figure 2b). At the highest level, the
instructor can use systems in GameX to allow for collaborative
interdisciplinary game development (Figure 2c).

While GameX has many features in common with other graphics
engines the desire to support collaborative game design requires
that the relative importance of features is carefully considered.
Good teaching materials and documentation are essential to
linking instructional goals to the learning tools. Advanced features
such as real-time lighting and shadows are desirable but are lower
in priority to the goal of providing a consistent interface.

Since GameX is open source students also have access to the
source code which reveals how GameX commands are processed
by DirectX and OpenGL. Advanced students are able to learn
these low-level APIs through the GameX source code. This is
consistent with the game industry approach which often has a set
of tools available for new developers whose underlying
implementation is revealed once more experience is gained.

4 Results

GameX was started in 2000, and the first version was used to
found the Game Design Initiative at Cornell University (GDIAC)
in Summer 2002. Project courses were immediately taught at
three different levels. The first level, Part I, used GameX to teach

basic graphics concepts with homeworks on viewing systems,
graphics, networking and simple physics. The second level, Part
II, teamed computer science students with students from art and
music to create collaborative game projects. Groups were
expected to complete one or more games per semester. A third
level, Part III, was also offered to advanced students who wished
to use GameX to pursue professional level topics in game design.
As an open source platform several students created extension
modules for GameX itself. GDIAC is currently pursuing a series
of courses based on these experimental projects. The first official
course in game design (CIS 300) at Cornell University was
offered in the Summer of 2004.

For all team based Part II projects students were given the choice
of developing games using other platforms as well. Fifty three
collaborative games have been developed by students at GDIAC
between 2002 and 2004, while thirty seven of these (70%) were
developed using GameX. Of the remainder, one group used
DirectX (2%), seven groups used OpenGL (13%), and the
remaining eight groups (15%) used another platform (Java, etc.)

The development of teaching materials in parallel with GameX
was critical to success. Homeworks also served a dual purpose as
tutorials. For example, students might be provided a simple
working physics system implemented in GameX and then be
asked to add collision detection. Providing a variety of useful
instructional resources was found to be an important aspect of
using GameX in the classroom.

A look at the Independent Game Festival (IGF) submissions for
2005 shows that the average development time for a student game
is four to six months.2 With GameX, collaborative games by
students took less than six weeks to produce comparable results.
The simplest GameX game requires less than a page of C++ code
with event loops, video memory, and timing all handled internally
by GameX. In one instance, a team of three students completed a
viewing system, a physics engine, a path finding algorithm, and
integrated artwork and music in less than a week. By removing
system-level details such as maintaining texture lists, managing
video memory and sustaining a given frame rate, GameX allows
students to focus on creating games while learning basic concepts.

5 Conclusions & Future Directions

Instructional game engines, unlike commercial engines, are
developed specifically to meet instructional needs. As a result the
supporting features such as documentation and tutorials are
developed in parallel with an incremental teaching approach.
GameX supports game design instruction on multiple levels. The
currently available release, GameX R5, supports 2D with some
support for 3D [Hoetzlein 2004]. Initial course offerings at
GDIAC focused on 2D for the sake of simplicity.

As is common with academic open source software, the vision for
GameX exceeds the pace of development. In the future, we hope
to include support for character animation, networking, particle
systems and natural environments. Unlike other engines, however,
our motivation has been to develop an incremental teaching tool
with a well documented interface and adequate instructional
materials. As a result, GameX allows students to explore

2 Retrieved and compiled from IGF website: http://www.igf.com

fundamental concepts in graphics and game design on multiple
levels based on instructional goals.

Credits

GDIAC is part of the Computing and Information Sciences at
Cornell University and has been supported by the GE Fund and
Microsoft. Thanks to Rajmohan Rajagopalan, the current
instructor for the Game Design Initiative at Cornell and to Justin
Pease who made significant contributions to GameX.

References

Conway, Matthew et al. 2000. Alice: lessons learned from building a 3D
system for novices. Proceedings of the SIGCHI conference on Human
factors in computing systems, The Hague, Netherlands, April 2000, p.
486-493.

Deutsch, Claudia H. 2002. Design Courses Gain Favor. New York Times,
New York, 1 Apr, 2002

Hoetzlein, Rama and Schwartz, David. 2004. Computer game design as a
tool for cooperative interdisciplinary education. Proceedings of the 2004
American Society for Engineering Education St. Lawrence Section Annual
Conference, Kingston, Canada, 2004.

Hoetzlein, Rama. 2004. GameX Official Home Page. Retrieved
January 22, 2005 from website: http://www.rchoetzlein.com/gamex

Jones, Randolph M. 2000. Design and Implementation of Computer
Games: A Capstone Course for Undergraduate Computer Science
Education. Proceedings of the ACM Technical Symposium on Computer
Science Education, Austin, TX, Mar, 2000

Laird, John. 2001. Using a Computer Game to Develop Advanced AI.
Computer, IEEE Computer Society Press, Los Alamitos, CA, 34, 7, p. 70-
75, July 2001.

Overmars, Mark. 2004. Game Design in Education. Retrieved January 22,
2005 from Utrecht University, Computer Science Department website:
http://archive.cs.uu.nl/pub/RUU/CS/techreps/CS-2004/2004-056.pdf

Parberry, Ian et al. 2005. Experience with an Industry-Driven Capstone
Course on Game Programming. Proceedings of the ACM Technical
Symposium on Computer Science Education, St. Louis, Missouri, 23-7
Feb, 2005

Yu, Connie. 2002. Developing A Game Programming Course. First
International Conference On Information Technology & Applications
(ICITA 2002), Bathurst, Australia., 25-8 Nov, 2002

David I. Schwartz is the Director of GDIAC, the Game Design Initiative
at Cornell University, and Lecturer for the Department of Computer
Science where he has forged a career in teaching and curriculum
development. As a graduate student he published two introductory
textbooks for Prentice Hall's popular E-Source series: Introduction to
UNIX and Introduction to Maple. Schwartz co-founded GDIAC in 2001
with Hoetzlein to initiate programs in game design at Cornell University.
Currently, Schwartz is leading the development of the public digital arts
computer laboratory which hosts Cornell's game design courses.

Rama Hoetzlein completed a BA in Computer Science and a BFA in Fine
Arts from Cornell University in 2001 where his thesis works focused on
mechanical sculpture. Hoetzlein initiated the GameX platform to support
instructional game development and co-founded GDIAC with Schwartz in
2001. Hoetzlein has worked in the fields of computer graphics, chemistry
and biology and is currently pursuing an MA from the Media Arts &
Technology Program at the University of California Santa Barbara. His
current research interests are in interactive art, knowledge systems, and
interdisciplinary education.

